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Abstract

For a homogeneous and linearly elastic solid the general expression of Young’s modulus E(n) is given, and a con-
strained extremum problem is formulated for the evaluation of the directions n corresponding to stationary values of
the modulus. The formulation follows that presented in [International Journal of Solids and Structures 40 (2003) 1713-
1744] for the cubic and transversely isotropic elastic symmetries. In this paper the tetragonal elastic symmetry class is
considered, and explicit solutions for the directions n associated to critical points of E(n) are analytically evaluated.
Properties of these directions and of the corresponding values of the modulus are discussed in detail. The results are
presented in terms of three material parameters, which are responsible of the degree of anisotropy. For the tetragonal
system, the complete description of the directional dependence of Young’s modulus leads to the identification of 12 clas-
ses of behavior. For each of these classes several examples of real materials are shown and suitable graphical represen-
tations of the function E(n) are given as well.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Elastic anisotropy is a common feature of real materials, although engineering materials are usually
modelled as macroscopically isotropic. However, being nowadays of growing interest the microstructural
aspects of solids and the design of man-made materials produced in order to accomplish specific mechanical
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requirements, the study of elastic anisotropies represents one of the mechanical topics widely studied in re-
cent years.

With the exception of the complete anisotropy (triclinic system) the elastic anisotropy is always restricted
by symmetry considerations, which follow from the symmetry elements of the material structure (Cowin
and Mehrabadi, 1995). Symmetry considerations are then of paramount importance in the study of the
directionality of material properties. Being the macroscopic behavior of a solid strongly conditioned by
its microstructural properties, for most materials the basic form of structural symmetry is that contained
in the crystal structure. The effects of crystal symmetry in the elastic properties are reported, for instance,
in Nye (1957) and Ting (1996). These elastic properties are specified by all the independent elements of the
elasticity tensor C, whose number ranges from 3 (cubic system) to 21 (triclinic system). The macroscopic
behavior of a solid is then related to its anisotropic properties and in some materials the degree of aniso-
tropy is decidedly non-negligible, leading sometimes to the proximity of material instability. In this work,
the directional dependence of Young’s modulus is investigated with reference to the tetragonal elastic sym-
metry, characterized by six elastic constants. The directional dependence of Young’s modulus in two dimen-
sions has been previously studied by Goens (1933) and Wooster (1949); some three-dimensional pictures of
plaster models of the surface generated by Young’s modulus are given by Schmid and Boas (1935) and some
analytical studies are provided by Hayes and Shuvalov (1988) and Boulanger and Hayes (1995) for the
cubic case. A complete theoretical investigation of Young’s modulus for cubic and transversely isotropic
solids, a classification of the various cases and the correspondence with real materials are given in Cazzani
and Rovati (2003), to which the reader is referred for a detailed general formulation and for a complete list
of references. On the basis of the approach given in that paper, the present work theoretically investigates
the elastic response of tetragonal solids, to deduce a rational classification in terms of Young’s modulus and
to recognize the correspondence of the various categories obtained with real materials.

In this section, the problem is formulated in the most general form as a constrained stationarity problem
for the evaluation of those directions n along which Young’s modulus E(n) attains stationary values. The
modulus E(n) is then a function of the components of the unit vector n and of the Cartesian components of
the fourth order elasticity tensor. As formulated here, the problem is equivalent to that formulated by Os-
trowska-Maciejewska and Rychlewski (2001), where the aim is to find the extrema of the stored elastic en-
ergy for solids under uniaxial tension.

In Section 2 the problem is specialized to the tetragonal elastic symmetry: the stationary points are evalu-
ated, together with the conditions for the existence of such points, in terms of three material parameters o, 3>
and 33 responsible of the degree of anisotropy (for other definitions of anisotropy parameters, see Nadeau and
Ferrari, 2001). The usual Voigt’s contracted representation of stress, strain and elasticity tensors is adopted.

In Section 3, a complete classification of the behavior of the function E(n) is provided; in particular 12
classes of mechanical response are identified and studied in detail. All the results are given in terms of the
material parameters oy, f/; and 55 (responsible of the discrepancy from isotropy) or of their dimensionless
counterparts A’, B’ and C'. It is shown that at each class corresponds at least one real material. For these
materials suitable spherical polar diagrams are provided in order to show the directional dependence of the
function E(n) for each class. Information and data for tetragonal real materials used in this work are taken
from Landolt and Bornstein (1992).

A linearly elastic, homogeneous and anisotropic solid, with positive definite stored energy, is considered.
The anisotropic elastic character of the material is obviously reflected on Young’s modulus, E, which is,
therefore, a function of direction in the solid. The body is subjected to a unit dipole acting in the direction
defined by the unit vector n. The problem considered here consists in the evaluation of the directions n cor-
responding to critical points of the function £ = E(n). The stress field corresponding to the unit dipole, in
absence of body forces, is given by

6 =nQn. (1)
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Denoting with S the positive definite fourth-order compliance tensor, the Hooke’s law furnishes the corre-
sponding strain field:

€ =S[o] =S[n®n). (2)

In view of characterizing the relationship which links the stress and the strain fields, in the direction n, the
strain tensor (2) is projected along that direction. The expression which defines Young’s modulus as a func-
tion of the direction n follows immediately:

1
e(n):m:n®n-§[n®n]. (3)
In a Cartesian orthogonal reference frame Ox;x,x3, expression (3) can be written in index form as
1
m = Sijhkninjnhnk7 (4)

where indices i, j, &, k range from 1 to 3 and the usual rule of sum over a repeated subscript is assumed.
In order to evaluate the direction n for which the modulus E(n)—or its reciprocal 1/E(n)—attains
extreme values, the following Lagrangian function is defined:

L) =n@n-Sn@n+iln-n—1), (5)

where 4 is a Lagrangian multiplier associated to the constraint n-n=1.
The stationarity conditions for the Lagrangian function % are thus
0% (n,A) o,
On
0% (n,A)
Y

and can be explicitly written, making use of the symmetries on S, as

:0’

{ 2Sl:,-hknjnhnk + /ll’l,‘ = 0,

nn;, —1=0.

2. Evaluation of the stationary points and conditions for existence

The tetragonal symmetry is characterized by five planes of elastic mirror symmetry, viz.

1. II; .= x;, =0;
2. Hu = X2:0;
3. HIII = X3:0;
4, HIV = X —XQZO;
5. HV::X1+X2:0.

Four of these planes are orthogonal to the fifth one (i.e. IIj;) and make angles of ©/4 with respect to one
another (see Fig. 1).

The number of elasticities characterizing this symmetry is six. For the tetragonal symmetry, the matrix
representation of the elasticity tensor, written in the material reference system, and taking into account the
minor and major symmetries on S, can be written as
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St Suz Sun 0 0 0 0 0 0

Snz Sun Sus 0 0 0 0 0 0

Sz Suss Suman 0 0 0 0 0 0

0 0 0 S 0 0 Sons 0 0
0 Sxus 0 0 Spz 0 . (8)

0 0 Spn O 0 Snn
Sy 0 0 Sps O 0

0 Sy O 0 Sxps O
0 0 0 0 0 S1212 0 0  Supn

0 0 0
0 0 0
0 0 0
0 0 0

The matrix representation of Voigt’s reduced compliances (whose entries are defined as s;; = Si11,
833 = 53333, S4q4 = 455303, S¢6 = 4S1212, S12 = S1122, S13 = S1133) expressed in the reference system of material
symmetry—the system Oxx,x3 in Fig. 1—takes the form:

siuos2osi3 00 0
s su siz 0 0 0
si3osi3 sy 0 0
0 0 0 s4 O
0 0 0 0 wsu
0 0 0 0 0 s

oS O O

The assumed existence of a positive definite elastic energy imposes some restrictions on the reduced elastic
coefficients in matrix (9): the application of Jordan’s lemma to (9) leads to the following constraints on the
reduced compliances:

s110>0, 533>0, 544 >0, s66>0, (10)

—S11 < 812 < 811, (11)
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1 S12 1 S12
—— /5118 14+ —<s13 <—=+/5118 1+—. 12
\/E\/ 115334 / s 13 \/5\/ 115334/ o (12)

In terms of reduced compliances s; and of the components of the unit vector n, expression (4) for 1/E(n)
explicitly reads

1
E(n)
which can be rewritten in the equivalent form:
1

=511 — (S11 — S33) (2S11 — 2S12 — 566)71%”2 (2S11 — 2S1; S44) (nfn% + n%n%), (13)

W =S — oczn;‘ — ﬂ3n2n2 B, (n n3 + n2n3) (14)
where the following material parameters have been defined:

0 1= S11 — 833, (15)

By := 2511 — 2513 — 4, (16)

B3 := 2s11 — 2512 — Se6- (17)

It must be noticed that:

1. expression (14) depends on all six independent elastic coefficients;
2. expression (14) differs from the analogous expression for the hexagonal case (see Cazzani and Rovati,
2003) for the presence of the material parameter f33, i.e.:

1 (1 5 2
(E) tetra B (E) hexa B3n1n2. (18)

Note that the material parameter «,, although given by the difference of two strictly positive material
parameters, is not sign-restricted. Anyway, these bounds for «, are easily found:

—s33 < 0y < 81, (19)

where the lower and upper bounds are approached in the limit as s;; and s33 go to zero, respectively.

It must be observed that also the parameters 5, and f3 are not sign-restricted. In particular, no bounds
can be assigned to f3,: indeed, by its definition (16), it depends on the compliance s;3 which, in turn, is
loosely restricted by s33 and sy, (which are independent of each other) through inequality (12).

Concerning the parameter f33, the bounds (10);, (10)4 and (11) imply that

—Se6 < ﬁ3 < 4dsq;. (20)

In this case, the lower bound is attained for any s;; when sy, — +s1;; the upper bound is reached when,
simultaneously, s1» — —s11 and sgg — 0.
For the elastic symmetry under consideration, the Lagrangian function (5) can be written in the form:

L =511 — wny — Pynimy — By(nins +myn3) + A(ni +ny +n; — 1) (21)
and the corresponding explicit stationarity conditions (7) read
(=Bsm3 = oms + A)m =0,
(=Bt = Bom3 + )y =0,
(—20n3 — By(n] +n3) + A)ny =0,
nt+nj+n=1.
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It is now possible to carry out some assumptions on the solutions: these allow to distinguish three different
cases. Case I occurs when the unit vector n has only one non-vanishing Cartesian component; Case 11, when
n shows two components different from zero and Case III when »r has all (i.e. three) non-vanishing compo-
nents. These three cases will be studied in detail in the following subsections.

2.1. Case I: n has only one non-vanishing component
First, if n has only one non-vanishing component, i.e., if # = te;, or n = +e,, or n = +te3, (e}, €,, €3 being

the unit vectors in the positive direction of the Cartesian reference axes) the following solutions are respec-
tively obtained:

n =1, m =1, n =1,
nm=nt=0 nm=nt=0 nm=n:=0
1 2 3 ) ) 1 3 ) 3 1 2 ) 23
ORR N @ 5, ® 15 am (23)
%2311, %ZSU, %2311—“2=S33-

In these solutions the admissibility conditions 0 < n] < 1 (i =1, 2, 3) are automatically satisfied, and the
positivity condition for Young’s modulus is a priori guaranteed in cases (1) and (2), whereas case (3) re-
quires that oy < sqy.

2.2. Case II: n has two non-vanishing components
The other cases to be considered are those when the unit vector n» shows at the same time two non-van-

ishing components, i.e., if n=nye, +n3e;, or n=mnje; +nze3, or n=nje; +nye,. In the first case
(n = ne> + n3e3), the following solution is obtained:

n =0,
s a4 B, :17 *2
m=l-m=1 2By —m) 2 2By —m)’
2 B 1w
@ {7 2 2w 24)

A:ﬁn2:ﬁ—§

. 2(ﬁ2—062)7

BZ

%:511 — (0om3 + pym3)n3 = sy _m'

This result is the same as in the transversely isotropic case (see Cazzani and Rovati, 2003), because the solu-
tion does not depend on the material parameter ;3 which makes the difference between the hexagonal and
the tetragonal cases. In other words, on the coordinate plane I1; the behavior of Young’s modulus is the
same for the transverse isotropy and the tetragonal class. By virtue of this, reference can be made to Caz-
zani and Rovati (2003): conditions ensuring that n, and n; be positive, and, moreover, that a positive value
of 1/E is attained at the stationary point are given in Table 1, where the new parameter /3; is defined as

pr = 2511(1 /1 —2> :2s11(1 T, /Sﬁ).
S11 S11

If the second possible form of the unit vector is considered (rn = nje; + nze;), the corresponding solution
reads
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Table 1
Admissibility conditions for the solution of Case 11-(4)
Bo > o o >0 0<ndni<l 1>0
Br> o o >0 B> 20y 20y < By < B
%<0 B> >0 0<py<py
B <oy o =0 B, <0 _
o <0 P2 <20, -
2 _q 2 _ 52 _ 1 0
np=1-n3=1- = — ,
2B, =) 2 2By — )
n =0,
1 o
n% = _BZ ==+ 2 )
(5) 2hy—a2) 2 20— ) (25)
BZ
h=pni=—"2
2 2(p, — )’
ﬁZ

1 2 2Y,,2 2

= =811 — (tonz: + pHny)n; =811 ——F7—7—7"7.

E ( 3 ﬁz 1) 3 4([32 _ 052)

This case reproduces the previous one with the exchange in roles between n; and n,, exactly as it appears in
the transversely isotropic case. Note again that the behavior of 1/E on the plane ITy; is independent on the
parameter f;.

Finally, when n = ne; + nye,, the solution is

g=1
n =1,

(6) ¢ m=0, (26)
p=t
b

In this case, the value of 1/E depends on the material parameter 85 and the stationary points belong to the
bisectors of the coordinate axes.

The positivity of n; and n, is automatically satisfied, whereas the positivity of 1/E needs, by virtue of
(17), that the following inequality holds:

S11—%>0 = ﬁ3<4S11. (27)
Now, by the definition of 3, (17), it follows:
s,
Si > —S12 — §7 (28)

which is always fulfilled for any admissible value of the elastic coefficient s¢¢. Indeed, the upper bound given
by (20) guarantees that 1/E > 0; if, on the other hand, B; is seen as an independent variable, (27), furnishes
an upper bound corresponding to (20).

It is useful to notice that the above-found stationary point is a maximum when

1 ..
E > 81 = ,83 < 0, that 18, if 2(S11 —S12) < S¢6, (29)
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whereas it is a minimum if
1 .
E <SS = ﬁ3 > 0, that 18, if 2(S11 — Slz) > S66. (30)

These two conditions allow to define two classes of behavior characterized by a shear stiffness respectively
lower, (29), or higher, (30), compared to that of an—at least transversely—isotropic material.

2.3. Case III: n has all non-vanishing components

The last case to be considered is that of n = nje; + nye; + nses:
ﬁz — 20(2

’11:4(/52_‘7‘2)_,337
= By — 2a
? 4B, — o) — py’
26, - B
UERE Ty Ry (31)

1= 2(ﬁ§ - OC2ﬁ3>
4, —m) = By’

Ly BB
£ 4(By — ) — B

First, it must be noticed that this stationary point shows equal values of n} and n3, so that it belongs to
one of the planes that bisect the coordinate axes x; and x», i.e. the planes II}y or ITy. The value of 1/E is
different from those found in the previous three cases, because on one hand there is an explicit dependence
on f;3—which does not appear in Cases II-(4) and 1I-(5)—and, on the other one, the material parameters o,
and f, appear explicitly in the definition of 1/E, differently from Case II-(6).

In order for the solution to be acceptable, the admissibility conditions n? = n3 > 0 and n3 > 0 must be
fulfilled. These require that

ﬁz 720(2
012 ==
<4(ﬁ2_a2) _ﬂ_’), (32)
0c_2b=B
4(fy — ) — B4

Two cases must be considered.

1. If B > on + B3/4, (32) imply

(127 = pom(8)
2. 1If By <o + B3/4, (32) imply
ﬁz < 2062 . ﬁ3

Once ensured that 0 < n? (for i =1, 2, 3), it is easily verified that

2(/32 - 2“2) + (zﬁz - /33) -
4(By — ) — B .

2 2 2 _
ny+n; +n;=




A. Cazzani, M. Rovati | International Journal of Solids and Structures 42 (2005) 5057-5096 5065

It is now necessary to enforce the condition 1/E > 0; it implies
ﬁ% — o3
sy ——————> 0. 35
! 4B, — ) — Bs (39)
Again, two cases have to be considered, according to the sign of the denominator of (35):
1. If B> o + B3/4, it must result
{ — 5 + 451 By + (a5 — su (4o + B3)] > 0,

By > an + B3 /4.

The left hand of inequality (36); is a quadratic function of f3,, and is therefore satisfied only within the range
defined by the roots (which must be real and distinct) of the associated quadratic algebraic equation:

(36)

B3 — 4siufy — [y — 511 (4o + )] = 0. (37)
The roots of (37) written in increasing order are

By == 2s11 — \/(4s11 — B3) (s11 — 2), (38)

ﬂlzl = 2S11 + \/(4S11 — ﬁ3)(S11 — 062), (39)
and turn out to be real and distinct if and only if the discriminant is positive, i.e.:

(4S11 — ﬁ3)(.§‘11 — 0(2) > 0. (40)

However the bounds (19), (20) cannot be violated, so that the only acceptable solution is

4s;1 — ;>0 < A4s
11— B N Bs 11 (1)
s — o >0 oy < S11-
The following result is therefore obtained:
> oy + f5/4,
ﬂlz 2 ﬂau/ (42)
By < By < B3

with B3 <4sqq, on <s17. It can be easily checked that the strongest inequality resulting from (42) is simply:
By < B < By
2. If B, <oy + B3/4, it must result
{ — 5 + 41 By + (o5 — su (4o + B3)] <0,
B, <oz + fs/4.

The left hand of inequality (43) is now a quadratic function of f5,, which can be satisfied only outside the
range of the roots (38), (39) of the associated quadratic algebraic equation (37), which must be again real
and distinct if bounds (19), (20) cannot be violated.As a consequence it must result

{ﬁz <o+ fi/4,
B> <ﬁ£Uﬁ2 >ﬁ?

with i3 <4s, an <sy;. It can be easily checked again that the strongest inequality resulting from (44) is
simply:

(43)

(44)
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Table 2
Admissibility conditions for the solution of Case I11-(7)
ﬁ2>%+az 0<n%,n%,n§<1 l>0
Py > %Jr o0 Py > max(2rx2,%) max(Zacz )< B < /3**
By <bt+ o By < min(2ay, %) _
By < [_3 + o,

since f3/4 4 oy < fy.
Finally, it is straightforward to verify that
min (2012,[;3) < ﬁ; < max <2a2,[;3>, (45)

and recognize that the prescription resulting from the condition 1/E > 0 can be simply written, in Case 1
above, as

max <2a2,ﬁ ) < B, < ﬁ (46)

An admissible solution for Case II1, both in terms of n? (i = 1, 2, 3), and of 1/E can be synthetically given in
Table 2, where the newly introduced parameter ﬁ;‘* is defined as

* . 2511 + \/(4311 — B3)(s11 — 22).

3. Stationary values of Young’s modulus E: classification and examples

Stationary values of Young’s modulus reciprocal, 1/E, have been obtained in the previous Section for
tetragonal symmetry.

If symmetries of the tetragonal class are taken advantage of, it is possible to construct the whole surface
representing a spherical polar diagram of 1/E(n) (or of E(n)) by simply considering one-sixteenth of it, spe-
cifically the region of the octant bounded by coordinate planes Iy, ITj; and by the bisector plane I1yy.

When all admissibility conditions are satisfied (both in terms of positive values of n? (with i = 1, 2, 3) and
of 1/E) there are in such a region five different stationary points. For the reader’s convenience, such points
are denoted by their spherical coordinates, namely longitude ¢ (measured on coordinate plane Il starting
from plane I1y); and latitude, ¥ (measured starting from coordinate plane ITyy;). These stationary points are
as follows:

1. 1 : 1 S11.
It belo‘nogs to the coordinate axis x; and lies on the intersection of planes IIy; and ITyj;. (On the whole
surface there are 4 points like this one.)

2. L : E‘ x/2) =511 — 0p.
It belongs to the coordinate axis x3, and lies on the intersection of the coordinate plane ITj; and the bisec-
tor plane ITyy. (There are, on the whole surface, 2 points like this.)
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3. L= l| =S — %3
C By El(n/a0) - . . . . .
It belongs to the coordinate plane Iy, always corresponding to the intersection with the bisector plane

Iyy. (There are 4 poirzlts like this on the whole surface.)

4, L.= 1’ R p— -
*Es T ElOw) 1 4, —)
It belongs to the coordinate plane I1y;. (There are 8 of these points on the whole surface.)
5. L = l| N = 811 — 7/;%_&2/}3 .
Es El(n/4,9) 4(pr—m)—p3

It belongs to the bisector plane I1yy. (There are 8 points like this on the whole surface.)

It should be noticed that the stationary points 1/E;, 1/E, and 1/E; are always present; the last two, namely
1/E4 and 1/Es, appear only if the conditions reported in Tables 1 and 2, respectively, are satisfied.

In order to characterize the stationary points, it is necessary to understand that the name minimum or
maximum, refers always to a constrained minimum/maximum, i.e. an extremum point belonging to a partic-
ular axis or plane. Moreover, stationary points are relevant to the radial vector describing in spherical coor-
dinates the surface 1/E(n).

With reference to 1/E, and 1/E; it can be stated that:

. Elz is a minimum value on both planes IT; and [Ty whenever o, > 0;
. Elz is a maximum value on both planes Iy and Iy whenever o, < 0;
. E% is a minimum value on the plane IT;;; whenever 3 > 0;
. E% is a maximum value on the plane ITy;; whenever f3 <0.

Moreover, on the bisector plane [Ty it results

1 1
E>E—2 whencx2>&,
1

1 53
— < — wh 5
3< 3 Wenoc2<4

It suffices then to investigate:

1. what is the role of the stationary point 1/E, (which appears only when conditions listed in Table 1 are
fulfilled) on the coordinate plane ITy; with reference to stationary points 1/E; and 1/E»;

2. what is the role of the stationary point 1/Es (which appears only when conditions listed in Table 2 are
fulfilled) on the bisector plane Iy with reference to stationary points 1/E; and 1/E,.

After some lengthy checks, it follows that:

. ELA is a minimum value on plane ITy; when both 5, > o, and conditions listed in Table 1 are fulfilled;
. El4 is a maximum value on plane IT;; when both f, < a, and conditions listed in Table 1 are fulfilled;
o Els is a minimum value on plane ITjy when both f, > %‘ + o, and conditions listed in Table 2 are fulfilled;
. Els is a maximum value on plane IIy when both f, < %’ + o, and conditions listed in Table 2 are fulfilled.

It is useful noting that on plane IT;;, whenever f, = 0, the stationary value 1/E4 corresponds to ¢ = 0, i.e. it
coincides with 1/E;; on the other hand, whenever B, = 2a,, the stationary value 1/E4 corresponds to ¥ =
7/2, coinciding with 1/E5. Similarly, on plane II}y, whenever f, = B3/2, the stationary value 1/Es corres-
ponds to ¥ = 0, i.e. it coincides with 1/Ej5; whilst, whenever 8, = 2a,, the stationary value 1/Es corresponds
to ¥ = n/2, coinciding with 1/E,.
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Table 3
Classification of stationary points of the surface 1/E(n) for tetragonal symmetry

Class =0 B3 =0 Bos 0n Bo=Psld+on L =

Resulting order relationship for f3,

B E3 1:% Es
I >0 B3>0 Ba> oz Ba> Pald+ o m m m m Ba> Bald+ o
11 o >0 B3>0 Br<ar Br> Bald + oy m m M m o+ Ba/d < Pr<or T
I wr >0 B3>0 2>y Ba<Pafd+ o m m m M < fr < f3/4 + o
v o >0 B3>0 PBr <o Br < B3/d + oy m m M M Br <oy
v ur >0 B3 <0 B2> 0y B> Pald+ on m M m m B2> 0y
VI o >0 B3 <0 Br<otn Br> Ba/d + oy m M M m Bald 4 o < By < s
vl w >0 B3 <0 B2> 0y Po<Pald+ o m M m M < o< f3fd+on T
VIII o >0 B3 <0 Br <o By < Ba/d + oy m M M M Br < B34+ o
IX ur <0 B3>0 B2> 0y B> Pald+ on M m m m Bo> Bal4 + o
X O(2<0 ﬁ3>0 /32<O(2 [)’2>[53/4+12 M m M m [f3/4+0(2<ﬁ2<0(27
XI 0(2<0 /33>0 /32>O(2 ﬂ2<ﬁ3/4+%2 M m m M 062<ﬂ2</33/4+(12
X0 o <0 B3>0 Br<on Bo < Bald + oy M m M M Br < B34+ o
XIIT 062<0 ﬁ3<0 ﬁ2>0(2 ﬁ2>ﬁ3/4+%2 M M m m ﬁ2>062
XIV O(2<0 ﬁ3<0 [32<0(2 ﬁ2>ﬁ3/4+12 M M M m [}3/4+0€2<ﬁ2<0€2
XV 0(2<0 /33<0 ﬁ2>062 ﬁ2<ﬁ3/4+%2 M M m M 062<ﬂ2<ﬁ3/4+062T
XVI 0 <0 [}3 <0 /32 < e%) ﬁz < /33/4 + 0%} M M M M [fz < [)’3/4 + e5)

These results allow to identify the following distinct classes, defined by all possible combinations of order
relationships between the values o, and 0; 85 and 0; B, and a»; f, and (B3/4 + ), which, on their own, de-
fine the nature (i.e. minimum or maximum) of stationary points 1/E,, 1/Es, 1/E4 and 1/Es respectively. It is
tacitly assumed that in order to ensure the existence of 1/E4 and 1/E5 the conditions listed in Tables 1 and 2
must be fulfilled.

If constrained minima are denoted by the symbol m, constrained maxima by the symbol M, and the nota-
tion T is adopted to outline an order relationship which cannot be satisfied, the 16 classes in Table 3 can be
defined.

It should be noticed that four classes, namely II, VII, X and XV, prescribe conflicting attributes to f,
and must therefore be removed; as a consequence only 12 admissible classes can exist when characterizing
the stationary points of 1/E for tetragonal symmetry.

If now attention is turned to the expression of Young’s modulus E (and not its reciprocal 1/E), the pre-
vious results can be directly applied, provided that the role of minima and maxima are exchanged, whereas
the reciprocal of the stationary values are considered.

As a matter of fact, if spherical coordinates are again used to describe the surface E(n), the five above
mentioned stationary points are as follows:

1\—1
1. El = E|(00) = (E_l) .
It belongs to the x; axis, at the intersection of planes IT;; and Iy
-1
2. E, = E|(,?n/2) = (Eiz) .
It belongs to the x; axis, at the intersection of planes Iy and I1yy.
-1
3. E3 = E|(n/4,0) = (E%) .
It is located on the plane 1y, always at the intersection with plane ITyy.
-1
4. E, = E|(o,z9) = (El4) .
It belongs to the plane Iy, provided that conditions listed in Table 1 are fulfilled.

5. Es = Elgy = (&)
(n/49) —
It belongs to the bisector plane Iy, provided that conditions listed in Table 2 are fulfilled.
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Table 4

Classification of stationary points of the surface E(n) for tetragonal symmetry

Class o =0 f3=0 o= op B = Ba/d+ oy E, E; E, Es Reference figures
la o >0 p3>0 2> on Ba> B3/4+ oz M M M M 3,4
1b o >0 B3>0 Bo> oy By < B3/d + 0y M M M m 5,6
1c o >0 B3>0 Pr <o Br < Ba/d + o M M m m 7,8
1d % >0 By <0 B> o B> Bald+ o M m M M 10, 11
le o >0 p3<0 Pa<on o> Ba/d+ an M m m M 12, 13
1f o >0 B3 <0 Pa<on By < B3/d + o M m m m 14, 15
2a 0 <0 p3>0 2> on Ba> B/ + oy m M M M 17, 18
2b 0 <0 B3>0 Bo> oy By < Ba/d + 0y m M M m 19, 20
2¢ o <0 B3>0 Ba <oy B2 < Ba/4+ as m M m m 21, 22
2d o <0 p3<0 P2 >0 Br> Bald + oy m m M M 24, 25
2e o0 <0 p3<0 pr <o ﬂ2>/33/4+062 m m m M 26, 27
2f o <0 B3 <0 PBr <o By < B3/d + oy m m m m 28, 29

When the above-listed stationary values of Young’s modulus are expressed as functions of the elastic
coefficients s11, $12, 513, 533, S44, Se6 the following results are obtained:

1
B=gr 47
1 S11 ( )

1
= 48
2 §33 ( )

4
= 2811 + 251 + Seg 49
} 2511 + 2512 + S¢6 (49)
4 — 2513 —
Ey=touten o2 ) (50)
4(S11S33 — 873 — S13S44) — Sy

2511 + 4s33 + 2510 — 8513 — 4844 + Se6 (s1)

5= 5 5 .
2811833 — 4513 + 2512533 — 4813504 — 844 + 533566

It is now possible, when conditions listed in Tables 1 and 2 are fulfilled, to identify the 12 distinct classes of
material behavior listed in Table 4. It should be emphasized that with the data available in the literature (Lan-
dolt and Bornstein, 1992) it has been possible to find for each class at least one material belonging to it.

For each of the 12 outlined classes some parametric plots of the surface E(n) have been produced in the
range of spherical coordinates 0 < ¢ < n/2U0 < ¥ < /2 in order to show the evolution exhibited by the
surface as a function of changes of material parameters.

For ease of comparison purposes, these plots have been produced by using the dimensionless counter-
parts of material parameters o, 5, fi3, namely A’, B’ and C’, defined as follows:

533 2513 + Sas 2512 + Se6
A== B=—" (C=—"—=. 52
S11 2511 2811 ( )
It can be easily shown that the inverse relations of (52), by virtue of (15)—(17) are simply:
o = sp(1 _A’)7 By = 2sn(1 _B/)7 By = 2su(l —Cl)~ (53)

Moreover, for each class a figure showing the whole surface generated by E(n) for some representing mate-
rials is given.
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3.1. Class la

It is defined by the following ranges of the material parameters:
0 >0 B3>0 By >0+ Bi/4
or, in dimensionless form,
14+C' 424
—

As shown in Fig. 2, where extension of contiguous classes 1a, 1b and 1c as a function of material parameter
f> are outlined, the existence of the stationary value Ej is restricted to the range:

A <1, C<l1; B<

max (o + B5/4,20,) < By < B,
whereas that of Es is delimited by
max(fs/2,20) < By < f3*.

Since within this class it happens that /3;* < ﬁ;, then it follows that both stationary values E, and Ejs
exist only if

max(fs/2,20) < fy < B3*.

Fig. 3 shows the evolution of the surface E(n) when the material parameters B’ and C’ do change.
Fig. 4 presents the whole surface generated by the directional dependence of Young’s modulus for some
representative materials, listed in the figure caption.

-
as >0, B3>0, i>2a2

2 p
0 a3 2000 g + ﬁ & B3* 035
4 2
o 4 4 4 Iy Iy e
E4 | E4 E4 |
- I '
Es Es ' Es
B3
as >0, ﬂ5>0 a2<?<2a2
[-
0 o B B g, 5B
2 | 4
4 4 4 I\ I\ R,
Ey | Ey |
........ —.{ X |
....... [ | |
Es E. 1 I E; 1
as >0, ﬂ3>0, —3<012
B3 B3 sk *
o A 2 ag + = 209 B3 B85
2 | | 4
o 4 I 4 Iy N e
E4 E4 |
........ —.{ X |
| |
........ x
Es ' E; !

Fig. 2. Extension of Classes la, 1b, 1c as a function of the material parameter f, and corresponding ranges of existence of stationary
values E,; and Es.
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A’=050 B'=0.40 C'=0.90 A’=0.50 B'=0.15 C'=0.90 A’'=0.50 B'=-0.15 C’'=0.90

A'=0.50 B'=-0.15 C’=0.50

A’=0.50 B'=0.40 C'=0.50 A’'=0.50 B’=0.15 C’=0.50

0

Z7INN
X
NN
[1 ““\\\\ X

1.5
1

0.5
0

A'=050 B'=0.40 C'=0.125 A’'=0.50 B’'=0.15 C'=0.125 A’'=0.50 B’=-0.15 C’'=0.125

Fig. 3. Class la: evolution of the surface E(n) as a function of changes of the dimensionless parameters B’ and C’ for a fixed value of

A

3.2. Class 1b

The material parameter ranges are, in this case,
>0, By>0; o< B, <o+ fs/4

i.e. in dimensionless form:

1+C +24 1+ 4

A4 <1, C<1; %<B’< ; .
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(a) (b) (c)

()] (h) U}

Fig. 4. Tetragonal system: materials belonging to Class la, defined in Table 4, and ordered for increasing values of the dimensionless
material parameter C'. (a) In-TI (indium—thallium, atomic percentage Tl: 15%); (b) indium—cadmium alloy (atomic percentage Cd:
3.4%); (c) indium-lead (atomic percentage Pb: 5%); (d) Hgln,Te, (mercury indium telluride, vacancy compound); (e) CoPt (cobalt
platinum); (f) stishovite; (g) p-CdP, (cadmium phosphide, at 100 K); (h) MoSi, (molybdenum disilicide); (i) T1Se (thallium selenide). In
the following table, elastic compliance coefficients sy, ..., 513 (taken from Landolt and Bornstein, 1992) and material parameters o,
B>, B3 are all expressed in TPa™!; Young’s moduli E;,, Enax are given in GPa.

i ! /i
Mat. 4 B Caw B Bz su 533 S44 S66 S12 513 Emin Emax

(a) 0.96 -0.21 —0.33 10.0 645.0 707.0 266.00 256.00 133.00 93.00 —134.00 —123.00.003760 .023314
(b) 0.97-0.04 —0.25 4.0364.0436.3175.00 171.00 147.00 89.30 —87.80 —80.50.005714.022356
(c) 0.49 0.08 —0.2294.0337.0448.0183.00 89.00 107.00 192.00 —137.00 —39.00.005464 .021445
(d) 0.84 034 0.08 6.4 51.5 71.5 38.80 3240 46.700 41.50 —17.70 —10.30.025773.053628
(e 095 038-0.13 03 7.0 99 570 539 800 642 247 —1.82.175439.337211
(ff) 052 051 016 14 29 50 29 153 396 331 —1.17 —0.47.337838.654331
(g9 0.84 058 035 29 148 229 17.70 14.80 32.60 2480 —6.13  —6.00.056497.087661
(h)y 0.79 081 0.77 0.6 1.0 1.2 2611 2.051 4897 5.165 —0.586 —0.33.382995 .487567
(i) 0.79 043 1.00 85 47.0 0.1 4120 32.70 78.80 64.10 9.10 —21.70.024272 .037241
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As Fig. 2 shows, the stationary value Ej4 exists only within the range:
2“2 < ﬁz < 062 +ﬂ3/4,

and occurs only if B3/2 > 2.
Existence of the stationary value Es is delimited by

a0 < B, < min(f;/2,2a,),

N
AR

/I
Z/MN\
Z7ITTTNN
TR

AN

/]
/171

A’=0.58 B’=0.605 C’=0.20 A'=0.58 B'=0.695 C’=0.20 A’=0.58 B'=0.785 C’'=0.20

7/ R
71111 R
AR
RennY

A'=0.58 B’=0.605 C’'=-0.10 A’=0.58 B’=0.695 C’'=-0.10 A’=0.58 B'=0.785 C'=-0.10

N
RN
st
FHR

A'=0.58 B'=0.495 C'=-0.18 A’=058 B'=0.535 C'=-0.18 A'=0.58 B’'=0.575 C'=-0.18

Fig. 5. Class 1b: evolution of the surface E(n) as a function of changes of the dimensionless parameters B’ and C’ for a fixed value
of A'.
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44

(b)

(a) (c)

L

(d) (e)

(@ (h)

(M)

Fig. 6. Tetragonal system: materials belonging to Class 1b, defined in Table 4, and ordered for increasing values of the dimensionless
material parameter C'. (a) TeO; (tellurium dioxide, at 78 K); (b) TeO, (tellurium dioxide, at 300 K); (c) Hg,Br, (mercurous bromide);
(d) Hg,l, (mercurous iodide); (e) MnF, (manganese fluoride); (f) a-NiSO,4-6H,O (nickel sulfate hexahydrate); (g) Sn (Tin); (h) TiO,
(titanium dioxide, rutile); (i) WSi, (tungsten disilicide). In the following table, elastic compliance coefficients sy, ..., 513 (taken from
Landolt and Bornstein, 1992) and material parameters a,, 55, fi3 are all expressed in TPa™'; Young’s moduli Ep;,, Enax are given
in GPa.

Mat. 4" B C'" o B P S11 $33 Sa4 S66 S12 s13 Emin Emax

(a) 0.070.12 —0.89 130.7 245.5 528.3 140.00 9.30 36.90 13.70 —131.00 —1.20 .007143 .126183
(b) 0.090.14 —0.84 106.5201.4 431.1117.00 10.50 37.40 15.10 —106.10 —2.38 .008547 .108401
(c) 0.030.13 —0.80437.8 790.4 1634.6 453.00 15.20 134.00 89.40 —409.00 —9.20 .002208 .065789
(d) 0.030.13 —0.80 525.4 938.6 1942.5 541.00 15.60 171.00 89.50 —475.00 —13.80 .001848 .064103
(e) 0.33045-045 18.5 304 79.8 27.60 9.09 32.00 1420 —-1940 —3.60 .036232.130719
(f)  0.530.65-0.29 30.7 46.1 167.8 65.00 34.30 86.50 56.20 —47.00 —1.30 .015385.043384
(g) 0.350.44 —0.27 27.6 47.8 107.5 4240 14.80 45.60 42.10 —32.40 —4.30 .023585.067568
(h) 0.38047 -0.21 42 72 164 6.80 2.60 8.06 5.21 —4.01 —0.85 .147059 .384615
(i) 0.760.84 0.67 0.6 0.8 1.6 2482 1.890 4.726 4.598 —0.632 —0.271 .402901 .529101
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and requires min(B5/2, 20,) > a,. As a consequence, as clearly shown in Fig. 2, it is not possible for this class
to have co-existence of both stationary values F; and FEs.

Fig. 5 outlines the evolution of the surface E(n) when, for a fixed value of 4’, B’ and C’ are independently
allowed to change.

In Fig. 6 the whole surface of E(n) generated by some representative materials belonging to Class 1b is
reported.

2% 5, 2% 5, Q0. 25
TN
l””““ﬁ\§§\§\\\\ 49.\.\.\.‘,\

R i SN 0

i iy

ity
0.5 0.5 0.5 \\\\\
0. 25 0.25 ‘,t:\s?’ g. 25
075

A’=0.50 B’=1.10 C'=050 A’'=050 B'=2.00 C'=050 A’'=0.50 B’=4.00 C'=0.50

NN
'llk\\\\\\\\\\\\
FTTTHRA
il \\\\\\\3
T

sty )

A'=0.50 B'=1.10 C'=0.125 A’'=0.50 B’'=2.00 C'=0.125 A’'=0.50 B’=4.00 C'=0.125

Fig. 7. Class lc: evolution of the surface E(n) as a function of changes of the dimensionless parameters B’ and C’ for a fixed value
of A'.
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3.3. Class Ic

It is delimited as follows:

0w >0 B3>0, B, <o,
or, by switching to dimensionless parameters,
144
A<1l; C<l1; B> —; .

By direct inspection of Fig. 2, it results that the stationary value E, is guaranteed to exist if
B, <0,
while Es5 exists within the range:
By < min(f5/2,20,).
Hence both stationary values exist if ff, <0.

(c)

(d)

Fig. 8. Tetragonal system: materials belonging to Class lc, defined in Table 4, and ordered for increasing values of the dimensionless
material parameter C'. (a) Ag,SO4-4NHj; (silver sulfate, ammoniated); (b) indium-lead (atomic percentage Pb: 17%; (c) vesuvian

(complex CaMgFeAl silicate); (d) CsNiF; (cesium nickel fluoride). In the following table, elastic compliance coefficients s, . .

+ 513

(taken from Landolt and BSrnstein, 1992) and material parameters oy, 5, 5 are all expressed in TPa™!; Young’s moduli Epin, Emax are

given in GPa.

Mat. 4 B C o B B3 s s Sua Se6 S12 513 Emin Enax

(a) 0.72 1.12 0.50 13.0 —11.2 46.0 46.40 33.40 127.00 86.00 —19.60 —11.50 .020966 .029940
(b) 1.00 1.11 0.93 0.0 —11.0 7.0 49.00 49.00 153.00 123.00 —16.00 —22.00 .019324 .021164
(c) 090 0.99 0.97 0.8 02 05 7.55 6.80 1790 1850 —1.93 —1.49 .132450 .147059
(d) 0.38 3.60 099 18.1 —151.2 0.4 29.10 11.00 213.00 84.00 —13.10 —1.81 .015910 .090909
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Fig. 7 shows the evolution of the surface E(n) when B’ and C’ do vary independently of each other, while
A’ is kept fixed.
The whole surface representing E(n) for four materials belonging to Class 1c¢ is depicted in Fig. 8.

3.4. Class 1d

The material parameters ranges are, for this class, as shown in Table 4:

w >0 f3<0; By >0,

whereas the dimensionless counterparts of a,, ff, 3 provide:
1+4
5

In Fig. 9, along with the extension of contiguous classes 1d, le and 1f as a function of the material
parameter f,, it is shown that the stationary value E, exists when

A<1l; C>1; B<

20, < By < B3,
whereas the existence of Es5 requires that
200 < B, < B3
For this given class, it is easy to realize that [3; < [3;*, so that stationary values E4 and Es coexist if
20 < By < B

The evolution of the surface representing E(n) is shown in Fig. 10 when A’ is kept fixed, while B’ and C’ are
allowed to change.

The whole surface of E(n) for one representative material belonging to Class 1d is shown in
Fig. 11.

I&;
Qo > 0, 83 <0, £3 > —2as
2 4 P
20 - g s + f Qo 202 By B3
_ & N | | & & & o
; )
i . o
. ! ' X |
Es ' E; '
as >0, 3 <0, % < —2ap
% 200 —rp s % 0 az 202 By B3
__ & & | 4 & & o
1/ 1d '
E, B, B,
........ | fe—— ]
........ _..I X l
ES E5

Fig. 9. Extension of Classes 1d, le, 1f as a function of the material parameter 8, and corresponding ranges of existence of stationary

values E,; and Es.
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Fig. 10. Class 1d: evolution of the surface £(n) as a function of changes of the dimensionless parameters B’ and C’ for a fixed value of 4.

3.5. Class le

This class is delimited as follows:

0 >0; P3<0; o+ fi/4< Py <o,
or, by using dimensionless parameters,
1+A’<B, - 1+C’—|—2A’.

2 4

A <1, C>1,;
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o

Fig. 11. Tetragonal system: material belonging to Class 1d, defined in Table 4. (NH,),CO (urea): A’ =0.67, B’ =0.32 and C' = 11.86
(dimensionless); o, = 31.0, B, = 130.0, f3 = —2062.0 (expressed in TPa~'). Elastic compliance coefficients (taken from Landolt and
Bornstein, 1992 and expressed in TPa’l): s11=95.10, 533 = 64.00, 544 = 160.00, 566 = 2220.00, 51, = 16.00, 513 = —50.00. Young’s
moduli (in GPa): E,;, = .001638 and E,,x = .019112.

Fig. 9 ensures the existence of the stationary value E4 when
%+ f3/4 < B, <0,

but this happens only if a, + f3/4 <O0.

The stationary value E5 does not occur in any case within this class; as a consequence that prevents coex-
istence of both E4 and Es.

The evolution of the surface E(n) when parameters B’ and C’ are allowed to change independently of
each other is shown in Fig. 12.

Fig. 13 provides the complete surface generated by the directional dependence of Young’s modulus for
four different materials belonging to this class.

3.6. Class If

It is delimited as follows:
o >0; p3<0; B, <o+ /4,
or, in dimensionless form,
1 "+ 24
A<1; C>1; B’>+C+.
By referring to Fig. 9, the stationary value E, exists when
B> < min(0, 0 + B5/4),
whereas the other one, Es, exists if

By < Bs/2.

Coexistence of these stationary values occurs therefore in the range f, < f85/2.

Fig. 14 shows how the surface representing E(n) changes when, for a fixed value of 4’, B’ and C’ do
change independently.

In Fig. 15, Young’s modulus generated surfaces for some materials belonging to the considered class are
shown.
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Fig. 12. Class le: evolution of the surface E(n) as a function of changes of the dimensionless parameters B’ and C’ for a fixed value
of 4.
3.7. Class 2a

It is delimited as follows (see Table 4):

w <05 B3>0, B>+ B3/4,
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(6
64

Fig. 13. Tetragonal system: materials belonging to Class le, defined in Table 4, and ordered for increasing values of the dimensionless
material parameter C'. (a) Zr,Ni (zirconium nickel); (b) ZrSiOy (zircon); (c) LuPOy (lutetium phosphate); (d) (NH;),CO (urea). In the

following table, elastic compliance coefficients sy, . .., s13 (taken from Landolt and Bornstein, 1992) and material parameters o, 5, 53
are all expressed in TPa™ !, Young’s moduli E i, Emax are given in GPa.

! / !
Mat. 4" B C" o B> B3 S11 $33 Sa4 66 S12 513 Emin Emax

(a) 050 0.82 1.67 10.8 7.9 —28.8 21.60 10.80 41.70 104.00 —16.00 —3.20 .034722 .092593
(b) 094 139 384 02 -21 —-150 265 2.50 885 20.70 —-0.18 —0.75 .156006 .400000
(¢) 093139 658 03 —-27 =391 3.50 325 11.80 46.10 —-0.02 —1.05 .075386 .307692
(d) 0.48 1.62 22.34 23.2 —56.0 —1916.6 44.90 21.70 160.00 2000.00  3.20 —7.10 .001908 .046083

or, by switching to dimensionless form,
1+C +24
4 .

As shown in Fig. 16, where the extension of the three contiguous classes 2a, 2b and 2c are marked as a
function of the material parameter f,, existence of stationary value Ej is ensured within the range:

max(o; + f3/4,0) < B, < ¥
and that of stationary value E5 within the range:

Bs/2 < By < ﬂ;*~

As it is easy to check, for the present class it results ﬁ;* < /3;; hence the simultaneous occurrence of E,
and FEs is guaranteed if

Bs/2 < By < BX*.

A>1;, C<l; B<
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i
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A'=0.50 B'=2.80 C'=2.00 A’'=0.50 B'=4.00 C'=2.00 A’=0.50 B’'=5.60 C’'=2.00
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Wuh
\
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Fig. 14. Class 1f: evolution of the surface E(n) as a function of changes of the dimensionless parameters B’ and C’ for a fixed value
of A'.

The evolution of surface £(n) when parameters B’ and C’ are allowed to change independently, while A’
is fixed, is depicted in Fig. 17.
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CC
¢e

Fig. 15. Tetragonal system: materials belonging to Class 1f, defined in Table 4, and ordered for increasing values of the dimensionless
material parameter C’. (a) Srg45BagssNb,Og (strontium barium niobate); (b) K,CuF,4 (potassium copper fluoride); (c) scapolite
(complex aluminosilicate); (d) LiRbs(SO4)3- 1iH,SO4 (lithium rubidium sulfate trihydrogen sulfate). In the following table, elastic
compliance coefficients sy, ..., 513 (taken from Landolt and Bornstein, 1992) and material parameters oy, 55, i3 are all expressed in
TPa~'; Young’s moduli Ep,, Emax are given in GPa.

I ! !
Mat. 4 B C B> Bz s S33 Su S66 S12 S13 Enin Ernax

(a) 098 134 1.13 0.1 —-44 —-17 644 634 1923 1923 —-2.33 —-0.97 .130893 .157729
(b) 092 142 132 14 —147 —11.4 17.60 16.20 62.50 4540  0.60 —6.30 .045499 .061728
(¢) 0.85 237 150 1.8 -33.7 —12.4 1230 10.50 63.90 43.70 —-3.37 —2.79 .047088 .095238
(d) 0.71 1.78 2.48 10.7 —58.0 —110.8 37.40 26.70 143.00 222.00 —18.20 —5.10 .015351 .037453

Fig. 18 presents the whole surface generated by the directional dependence of Young’s modulus for 9
representative materials belonging to Class 2a.

3.8. Class 2b

In this case, the range of material parameters is as follows:
0 <0; B3>0 w<py<m+ /4,
or, by making use of the dimensionless counterparts,
1+C’+2A’<B/< 1+4
4 2
By inspection of Fig. 16 it is easily seen that existence of stationary value E4 is ensured within the range:
0<p, <o+ f3/4,
which is admissible only if 3/2 > 0.

A>1; C <l
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Fig. 16. Extension of Classes 2a, 2b, 2¢ as a function of the material parameter f§, and corresponding ranges of existence of stationary
values E,; and Es.

For this class the other stationary value, Es, does not exist, nor it is possible to find a common range of
existence for both values.

Fig. 19 presents, as usual, some parametric plots of the surface E(n) to allow understanding the effects of
changes of parameters B’ and C’ (whereas A’ is kept fixed), on its shape evolution. These shapes should be
compared with the whole surface produced by a material belonging to the present class, shown in Fig. 20.

3.9. Class 2c¢

These are the bounds delimiting this class:
0 <0, B3>0, B <m,
and their dimensionless counterparts turn out to be

1+4
A>1, C<l1; B> ; .

Fig. 16 shows that the stationary values E4 and Es simultaneously exist if
BZ < 20(2.

Parametric plots showing the evolution of surface E(r) when parameters B’ and C’ are allowed to change by
taking A’ fixed are presented in Fig. 21.

Fig. 22 provides instead the complete surfaces produced by the directional dependence of Young’s mod-
ulus for some materials belonging to Class 2c.

3.10. Class 2d

The range of material parameters for the present class are

w0 <0; f3<0; fy,> o0,
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Fig. 17. Class 2a: evolution of the surface E(n) as a function of changes of the dimensionless parameters B’ and C’ for a fixed value
of A'.

or, alternatively,
144

A>1;, C>1, B< 3

Fig. 23 outlines the extension of the contiguous classes 2d, 2e and 2f as a function of the material param-
eter fi,; it provides moreover the range of existence of the stationary value Ej4, which turns out to be

0<pBy<py
and that of the stationary value Es, namely
max(oy, f3/2) < py < B
It is easy to check that in this case B; < ﬁ;*; hence E, and E5 coexist if

0<ﬁ2<ﬁ;-
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i

(b)

(9)

(h)

0]

Fig. 18. Tetragonal system: materials belonging to Class 2a, defined in Table 4, and ordered for increasing values of the dimensionless
material parameter C'. (a) In-TI (indium-thallium, atomic percentage Tl: 10%); (b) In-TI (indium-thallium, atomic percentage TI:
11.5%); (c¢) In (indium); (d) CdGeAs, (cadmium germanium arsenide); (¢) BaTi, (barium titanate); (f) AgGaS, (silver gallium sulfide);
(g) BaLaGa30; (barium lanthanum gallate); (h) SrCIF (strontium chloride fluoride); (i) BaCIF (barium chloride fluoride). In the
following table, elastic compliance coefficients sy, . . ., 513 (taken from Landolt and Bornstein, 1992) and material parameters os, 55, f3
are all expressed in TPa™'; Young’s moduli Ep;,, Emax are given in GPa.

Mat. 4" B ' w fr Pz osu 8§33 S44 S66 S12 513 Emin Emax

(a) 1.07 —0.25 —0.22 —15.0 559.0 547.0 224.00 239.00 125.00 93.00 —96.00 —118.00 .004184 .024603
(b) 1.17 —0.17 —0.15 —32.0 441.0 431.0 188.00 220.00 147.00 95.00 —75.00 —106.00 .004545 .022005
(¢) 1.32 —0.12 —0.03 —47.4 332.9 306.4 148.80 196.20 153.70 83.20 —46.00 —94.50 .005097 .021921
(d 125 0.07 024 =53 402 32.8 21.60 26.90 23.80 24.50 —7.04 —10.40 .037175 .104104
(e) 195 049 026 —-7.7 82 12.0 8.05 1570 18.40 8.84 —235 —5.24 .063694 .201379
(f) 137 024 033 —-9.7 399 353 26.20 3590 41.50 32.50 —7.70 —14.50 .027855 .069737
(g L6l 0.77 0.59 —-6.1 45 8.1 10.03 16.16 25.64 18.52 —-3.30 —5.06 .061881 .125178
(h) 1.51 081 096 —-64 47 1.0 12.50 18.90 32.70 26.40 —1.20 —6.20 .052910 .084434
(i) 2.02 055 097 —16.5 145 1.1 1620 32.70 41.10 30.10 0.60 —11.60 .030581 .069727
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A’'=1.20 B’=0.955 C’'=0.40 A’=1.20 B’=0.995 C’=0.40

A'=1.20 B’=0.955 C'=0.10 A’=1.20 B’=0.995 C'=0.10

A'=1.20 B’=0.805 C'=-0.20 A'=1.20 B'=0.885 C'=-0.20 A’=1.20 B'=0.955 C'=-0.20 A’'=120 B'=0.995 C'=-0.20

Fig. 19. Class 2b: evolution of the surface E(n) as a function of changes of the dimensionless parameters B’ and C’ for a fixed value
of A'.

Fig. 20. Tetragonal system: material belonging to Class 2b, defined in Table 4. Pby 37Bag ¢3Nb>Og (lead barium niobate): A’ = 1.66,
B’ =1.28 and C' =0.78 (dimensionless); o, = —3.8, i = —3.2, i3 = 2.6 (expressed in TPa_l); Elastic compliance coefficients (taken
from Landolt and Bornstein, 1992 and expressed in TPa’l): s11 = 5.80, 533 =9.60, 544 = 18.20, s¢6 = 12.40, 51, = —1.70, 513 = —1.70.
Young’s moduli (in GPa): E;, =.104167 and E,,. = .194175.
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Fig. 21. Class 2c: evolution of the surface E(n) as a function of changes of the dimensionless parameters B’ and C’ for a fixed value

of 4.

Fig. 24 shows parametric plots of the surface E(n), and is intended to provide some clues about the evo-
lution of the surface shape when, for a fixed value of 4’, the dimensionless parameters B’ and C’ are allowed
to change.

Some complete surfaces generated by Young’s modulus for several materials belonging to this class are
presented in Fig. 25.

3.11. Class 2e

The delimiting range for material parameters is
O€2<0; ﬁ3<0, 062+ﬁ3/4<,32<0t2,
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Q¢
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Fig. 22. Tetragonal system: materials belonging to Class 2c, defined in Table 4, and ordered for increasing values of the dimensionless
material parameter C’. (a) Pby 346Bag s00Nag 036L10.02s—Nb,Og (lead barium niobate, Na, Li-doped); (b) Ba,Si,TiOg (barium silicon

titanium oxide, fresnoite); (c) PdPb, (palladium plumbide). In the following table, elastic compliance coefficients sy, .

.., 513 (taken

from Landolt and Bérnstein, 1992) and material parameters a,, f, 3 are all expressed in TPa™'; Young’s moduli Epin, Enmax are given

in GPa.
Mat. 4* B C o B Bz s 833 S44 Se6 S12 513 Emin Ernax
(a) 1.57 134 051 -3.0 —-3.5 50 510 8.10 13.40 880 —1.80 0.14 .123457 .259740
(b) 1.08 1.75 091 -54 —-114 14 7.60 13.00 30.00 17.00 —1.60 —1.70 .076834 .137931
(c) 1.02 2.18 098 —-0.0 —-35 0.1 148 1.50 745 4.01 -0.56 —-0.51 .425164 .684229
ag <0, B3 <0, &>012
2 B3 B3
209 Qg+ — Q2 _ 0 3 5*
. d | 4 | % d 4 4 -
of 2e 2d
e m I
““““ X | | | |
““““ = X | 5 |
5 5
ag <0, ,63<07 2042<?3<O£2
2 w2 2 0 ;6
i | 4 1 i . Lo
2f 2d
e I
B X ! LN
Es VE; E; !
as <0, 3<0, %<20{2
B d az 0 G
R L d d d d -
2f 2d
2] E.| E . E, .
........ . |« >
________ |
E’i E; Es '

Fig. 23. Extension of Classes 2d, 2e, 2f as a function of the material parameter 5, and corresponding ranges of existence of stationary

values E; and Es.
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A’=2.00 B'=0.15 C'=2.00 A'=2.00 B'=-0.05 C'=2.00

A'=2.00 B'=0.40 C’'=4.00 A'=2.00 B'=0.15 C'=4.00 A’=2.00 B'=-0.05 C'=4.00

Fig. 24. Class 2d: evolution of the surface E(n) as a function of changes of the dimensionless parameters B’ and C’ for a fixed value of
A

and for the dimensionless ones is instead:

1+4 1 " 24
A>1 C>1; ; <B < +C4+ )

By inspection of Fig. 23 it turns out that the stationary value E, exists if

oy + f3/4 < fp < 20,

but this requires o, + B3/4 < 20.
The other stationary value, Es, exists instead within the range

max (20, f3/2) < f, < oy,

provided that f3/2 > w.
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-

(9) (h) 0}

Fig. 25. Tetragonal system: materials belonging to Class 2d, defined in Table 4, and ordered for increasing values of the dimensionless
material parameter C’. (a) Tby(Mo),)s (terbium molybdate, at 533 K); (b) Srg ;Bag30NbyOg (strontium barium niobate); (¢) FeGe,
(iron germanide); (d) Li,B4O; (lithium tetraborate); (e) Ca,Sr(C,HsCO;)¢ (calcium strontium propionate); (f) C(CH,)ONO,),
(pentaerythritol tetranitrate); (g) TlSe (thallium selenide); (h) Zn[C(NH,);]x(SO4), (Zinc guanidinium sulfate); (i) Hgl, (mercuric
iodide). In the following table, elastic compliance coefficients sqy, ..., s13 (taken from Landolt and Bornstein, 1992) and material
parameters o, 5, f53 are all expressed in TPa~'; Young’s moduli Epn, Emax are given in GPa.

/ / !
Mat. 4 B C o P Bz su §33 Sa4 Se6 S12 S13 Emin Emax

(a) 1.59 —0.10 1.05 —14.1 53.1 —-2.6 24.10 32.80 37.80 34.80 8.00 —21.30 .026178 .073473
(b) 190 1.131.08 —-48-14 —-08 532 10.10 15.50 14.40 —-1.46 —1.73 .099010 .187970
(c) 11.30 1.411.23 -492 -39 22 478 5400 17.20 1140 0.18 —1.86 .018519 .212984
(d 270 038 1.34 —-15.1 11.1 —6.1 890 24.00 17.50 21.50 1.20 —5.40 .041667 .129461
(e) 1.04 0.70 1.38 —5.0 84.0 —107.0 142.00 147.00 288.00 513.00 —61.00 —44.00 .005926 .008185
() 1.74 0.67 1.53 =59.0 53.0 —84.0 80.00 139.00 199.00 254.00 —5.00 —46.00 .007194 .013563
(g) 1.26 0.14 1.67 —6.9 454 -357 26.50 33.40 31.20 83.30  2.70 —11.80 .028229 .060069
(h) 1.60 0.222.14 -274 71.4 —104.1 4556 7292 81.17 182.82  6.21 —30.70 .013714 .030612
(1) 2.63 0.88 5.39 —67.0 10.0 —360.2 41.00 108.00 138.00 433.00  4.60 —33.00 .007631 .024585
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As a consequence, such ranges are separate, therefore no simultaneous occurrence of E, and E5 can be

foreseen.

Fig. 26 shows the evolution of the surface E(n) when, for a fixed value of 4’, dimensionless parameters B’

and C’ are independently changed.

Fig. 27 shows instead the surface generated by the directional dependence of Young’s modulus for 4

materials belonging to Class 2e.

3.12. Class 2f

This last class is delimited as follows (see Table 4):

.25
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Fig. 26. Class 2e: evolution of the surface E(n) as a function of changes of the dimensionless parameters B’ and C’ for a fixed value

of A'.
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(a) (b)

(c) (@

Fig. 27. Tetragonal system: materials belonging to Class 2e, defined in Table 4, and ordered for increasing values of the dimensionless
material parameter C’'. (a) ND4D,PO,; (ammonium dihydrogen phosphate, deuterated); (b) RbD,;AsO, (rubidium dideuterium
arsenate); (c) RbH,PO, (rubidium dihydrogen phosphate); (d) CsH,AsO, (cesium dihydrogen arsenate). In the following table, elastic
compliance coefficients sy, ..., 513 (taken from Landolt and Bornstein, 1992) and material parameters o,, 55, 3 are all expressed in
TPa™!; Young’s moduli E;,, Enax are given in GPa.

Mat. 4 B (' o B> B3 s 833 Sas S66 S12 $13 Emin Emax
(a) 2.32 232 440 —-25.0 -50.0 —129.0 19.00 44.00 110.00 163.00 2.00 —11.00 .019512 .052632
(b) 1.10 1.97 539 —-24 —47.8 —-216.8 24.70 27.10 106.00 246.00 10.10 —4.40 .012674 .040486

(¢ 1.31 256 846 —-52 —52.7 —252.0 16.90 22.10 94.30 281.00 2.40 —3.90 .012516 .059172
(d) 1.29 383 15.15 —5.7 —109.9 —548.8 19.40 25.10 150.00 588.00 —0.19 —0.64 .006385 .051546

or, in dimensionless form,
1+C +24
—a

Fig. 23 guarantees that the stationary value Ej4 exists within the range:
B, < min(20,, 05 + f5/4),
while stationary value Es exists within the range:
fy < min(f5/2,20).

Hence E,; and Es simultaneously occur if > <min(f3/2, 20).

The evolution of surface E(n) is parametrically investigated in Fig. 28, when A’ is kept fixed, while B’ and
C’ vary independently of each other.

Finally Fig. 29 presents the directional dependence of E(n) for six materials which are representative of
the class under investigation.

A>1, C>1; B>
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Fig. 28. Class 2f: evolution of the surface E(n) as a function of changes of the dimensionless parameters B’ and C’ for a fixed value
of A'.

4. Closure

For materials with tetragonal elastic symmetry, the directions along which Young’s modulus attains sta-
tionary values have been analytically computed. The analytical solutions are expressed in terms of three
material parameters responsible of the discrepancy from isotropy. The directions corresponding to critical
values of the function E(n) and the associated expressions have been discussed in detail and, in particular,
12 classes of different mechanical behaviors have been outlined. These classes cover all the possible mechan-
ical responses in terms of Young’s modulus and each class is discussed in detail. It is also shown that all these
classes occur in real materials, and a wide selection of the corresponding surfaces, showing in spherical polar
diagrams the directional dependence of E(n), are provided as well. Future developments of the present work



A. Cazzani, M. Rovati | International Journal of Solids and Structures 42 (2005) 5057-5096 5095

<6l

(d) (e) ®

Fig. 29. Tetragonal system: materials belonging to Class 2f, defined in Table 4, and ordered for increasing values of the dimensionless
material parameter C'. (a) Al,Cu (aluminum copper); (b) Na,S-9H,O (sodium sulfide nonahydrate); (c) La; g¢Srg 14CuOy4 (lanthanum
strontium copper oxide); (d) K,PtCly (potassium tetrachloroplatinate); (¢) NH4H,AsO, (ammonium dihydrogen arsenate);
(f) KH,AsO4 (potassium dihydrogen arsenate). In the following table, elastic compliance coefficients sy, ..., 513 (taken from Landolt
and Bornstein, 1992) and material parameters oy, 55, f§; are all expressed in TPa™!; Young’s moduli Ei,, Enax are given in GPa.

i ! !
Mat. 4" B' C %3 B2 B3 S 8§33 Saa S66 S12 513 Emin  Emax

(a) 1.09 2.09 1.25 —-0.6 —16.1 —-3.70 7.38 8.01 3570 22.40 —-1.97 -—2.40 .084708 .135501
(b) 1.14 1.20 1.32 53 —14.8 —-24.0 37.80 43.10 114.00 124.00 —12.20 —11.80 .022543 .026455
(¢ 127138 1.80 —-12 -34 —-72 450 570 14.80 17.20 —0.50 —1.20 .158103 .222222
(d) 148 1.64 252 —19.2 —51.6 —122.0 40.10 59.30 165.00 214.00 —5.90 —16.60 .014164 .024938
(e) 253 3.11 4.12 -30.2 —83.4 —123.6 19.80 50.00 149.00 161.00  1.10 —13.00 .017879 .050505
(f) 143 254465 —-7.1 —504 —119.8 16.40 23.50 93.00 151.00  0.80 —4.90 .021570 .060976

will concern the application of the procedure here presented to weaker elastic symmetry classes, although an
increasing number of elastic constants would lead to much more involved computations.
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