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Abstract

For a homogeneous and linearly elastic solid the general expression of Young�s modulus E(n) is given, and a con-
strained extremum problem is formulated for the evaluation of the directions n corresponding to stationary values of
the modulus. The formulation follows that presented in [International Journal of Solids and Structures 40 (2003) 1713–
1744] for the cubic and transversely isotropic elastic symmetries. In this paper the tetragonal elastic symmetry class is
considered, and explicit solutions for the directions n associated to critical points of E(n) are analytically evaluated.
Properties of these directions and of the corresponding values of the modulus are discussed in detail. The results are
presented in terms of three material parameters, which are responsible of the degree of anisotropy. For the tetragonal
system, the complete description of the directional dependence of Young�s modulus leads to the identification of 12 clas-
ses of behavior. For each of these classes several examples of real materials are shown and suitable graphical represen-
tations of the function E(n) are given as well.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Elastic anisotropy is a common feature of real materials, although engineering materials are usually
modelled as macroscopically isotropic. However, being nowadays of growing interest the microstructural
aspects of solids and the design of man-made materials produced in order to accomplish specific mechanical
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requirements, the study of elastic anisotropies represents one of the mechanical topics widely studied in re-
cent years.

With the exception of the complete anisotropy (triclinic system) the elastic anisotropy is always restricted
by symmetry considerations, which follow from the symmetry elements of the material structure (Cowin
and Mehrabadi, 1995). Symmetry considerations are then of paramount importance in the study of the
directionality of material properties. Being the macroscopic behavior of a solid strongly conditioned by
its microstructural properties, for most materials the basic form of structural symmetry is that contained
in the crystal structure. The effects of crystal symmetry in the elastic properties are reported, for instance,
in Nye (1957) and Ting (1996). These elastic properties are specified by all the independent elements of the
elasticity tensor C, whose number ranges from 3 (cubic system) to 21 (triclinic system). The macroscopic
behavior of a solid is then related to its anisotropic properties and in some materials the degree of aniso-
tropy is decidedly non-negligible, leading sometimes to the proximity of material instability. In this work,
the directional dependence of Young�s modulus is investigated with reference to the tetragonal elastic sym-
metry, characterized by six elastic constants. The directional dependence of Young�s modulus in two dimen-
sions has been previously studied by Goens (1933) and Wooster (1949); some three-dimensional pictures of
plaster models of the surface generated by Young�s modulus are given by Schmid and Boas (1935) and some
analytical studies are provided by Hayes and Shuvalov (1988) and Boulanger and Hayes (1995) for the
cubic case. A complete theoretical investigation of Young�s modulus for cubic and transversely isotropic
solids, a classification of the various cases and the correspondence with real materials are given in Cazzani
and Rovati (2003), to which the reader is referred for a detailed general formulation and for a complete list
of references. On the basis of the approach given in that paper, the present work theoretically investigates
the elastic response of tetragonal solids, to deduce a rational classification in terms of Young�s modulus and
to recognize the correspondence of the various categories obtained with real materials.

In this section, the problem is formulated in the most general form as a constrained stationarity problem
for the evaluation of those directions n along which Young�s modulus E(n) attains stationary values. The
modulus E(n) is then a function of the components of the unit vector n and of the Cartesian components of
the fourth order elasticity tensor. As formulated here, the problem is equivalent to that formulated by Os-
trowska-Maciejewska and Rychlewski (2001), where the aim is to find the extrema of the stored elastic en-
ergy for solids under uniaxial tension.

In Section 2 the problem is specialized to the tetragonal elastic symmetry: the stationary points are evalu-
ated, together with the conditions for the existence of such points, in terms of three material parameters a2, b2

and b3 responsible of the degree of anisotropy (for other definitions of anisotropy parameters, seeNadeau and
Ferrari, 2001). The usual Voigt�s contracted representation of stress, strain and elasticity tensors is adopted.

In Section 3, a complete classification of the behavior of the function E(n) is provided; in particular 12
classes of mechanical response are identified and studied in detail. All the results are given in terms of the
material parameters a2, b2 and b3 (responsible of the discrepancy from isotropy) or of their dimensionless
counterparts A 0, B 0 and C 0. It is shown that at each class corresponds at least one real material. For these
materials suitable spherical polar diagrams are provided in order to show the directional dependence of the
function E(n) for each class. Information and data for tetragonal real materials used in this work are taken
from Landolt and Börnstein (1992).

A linearly elastic, homogeneous and anisotropic solid, with positive definite stored energy, is considered.
The anisotropic elastic character of the material is obviously reflected on Young�s modulus, E, which is,
therefore, a function of direction in the solid. The body is subjected to a unit dipole acting in the direction
defined by the unit vector n. The problem considered here consists in the evaluation of the directions n cor-
responding to critical points of the function E = E(n). The stress field corresponding to the unit dipole, in
absence of body forces, is given by
r ¼ n� n: ð1Þ
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Denoting with S the positive definite fourth-order compliance tensor, the Hooke�s law furnishes the corre-
sponding strain field:
� ¼ S½r� ¼ S½n� n�: ð2Þ
In view of characterizing the relationship which links the stress and the strain fields, in the direction n, the
strain tensor (2) is projected along that direction. The expression which defines Young�s modulus as a func-
tion of the direction n follows immediately:
�ðnÞ ¼ 1

EðnÞ ¼ n� n � S½n� n�: ð3Þ
In a Cartesian orthogonal reference frame Ox1x2x3, expression (3) can be written in index form as
1

EðnÞ ¼ Sijhkninjnhnk; ð4Þ
where indices i, j, h, k range from 1 to 3 and the usual rule of sum over a repeated subscript is assumed.
In order to evaluate the direction n for which the modulus E(n)—or its reciprocal 1/E(n)—attains

extreme values, the following Lagrangian function is defined:
Lðn; kÞ ¼ n� n � S½n� n� þ kðn � n
 1Þ; ð5Þ

where k is a Lagrangian multiplier associated to the constraint n Æ n = 1.

The stationarity conditions for the Lagrangian function L are thus
oLðn; kÞ
on

¼ 0;

oLðn; kÞ
ok

¼ 0;

8>><
>>: ð6Þ
and can be explicitly written, making use of the symmetries on S, as
2Sijhknjnhnk þ kni ¼ 0;

nini 
 1 ¼ 0:

�
ð7Þ
2. Evaluation of the stationary points and conditions for existence

The tetragonal symmetry is characterized by five planes of elastic mirror symmetry, viz.

1. PI := x1 = 0;
2. PII := x2 = 0;
3. PIII := x3 = 0;
4. PIV := x1 
 x2 = 0;
5. PV := x1 + x2 = 0.

Four of these planes are orthogonal to the fifth one (i.e. PIII) and make angles of p/4 with respect to one
another (see Fig. 1).

The number of elasticities characterizing this symmetry is six. For the tetragonal symmetry, the matrix
representation of the elasticity tensor, written in the material reference system, and taking into account the
minor and major symmetries on S, can be written as



x1

x2

x3

x’1

x’2

Fig. 1. Planes of elastic mirror symmetry for the tetragonal system.
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S1111 S1122 S1133 0 0 0 0 0 0

S1122 S1111 S1133 0 0 0 0 0 0

S1133 S1133 S3333 0 0 0 0 0 0

0 0 0 S2323 0 0 S2323 0 0

0 0 0 0 S2323 0 0 S2323 0

0 0 0 0 0 S1212 0 0 S1212

0 0 0 S2323 0 0 S2323 0 0

0 0 0 0 S2323 0 0 S2323 0

0 0 0 0 0 S1212 0 0 S1212

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

: ð8Þ
The matrix representation of Voigt�s reduced compliances (whose entries are defined as s11 = S1111,
s33 = S3333, s44 = 4S2323, s66 = 4S1212, s12 = S1122, s13 = S1133) expressed in the reference system of material
symmetry—the system Ox1x2x3 in Fig. 1—takes the form:
s11 s12 s13 0 0 0

s12 s11 s13 0 0 0

s13 s13 s33 0 0 0

0 0 0 s44 0 0

0 0 0 0 s44 0

0 0 0 0 0 s66

0
BBBBBBBBB@

1
CCCCCCCCCA
: ð9Þ
The assumed existence of a positive definite elastic energy imposes some restrictions on the reduced elastic
coefficients in matrix (9): the application of Jordan�s lemma to (9) leads to the following constraints on the
reduced compliances:
s11 > 0; s33 > 0; s44 > 0; s66 > 0; ð10Þ


s11 < s12 < s11; ð11Þ
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 1ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffi
s11s33

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s12

s11

r
< s13 <

1ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffi
s11s33

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s12

s11

r
: ð12Þ
In terms of reduced compliances sij and of the components of the unit vector n, expression (4) for 1/E(n)
explicitly reads
1

EðnÞ ¼ s11 
 ðs11 
 s33Þn43 
 ð2s11 
 2s12 
 s66Þn21n22 
 ð2s11 
 2s13 
 s44Þ n21n
2
3 þ n22n

2
3

� �
; ð13Þ
which can be rewritten in the equivalent form:
1

EðnÞ ¼ s11 
 a2n43 
 b3n
2
1n

2
2 
 b2 n21n

2
3 þ n22n

2
3

� �
; ð14Þ
where the following material parameters have been defined:
a2 :¼ s11 
 s33; ð15Þ

b2 :¼ 2s11 
 2s13 
 s44; ð16Þ

b3 :¼ 2s11 
 2s12 
 s66: ð17Þ

It must be noticed that:

1. expression (14) depends on all six independent elastic coefficients;
2. expression (14) differs from the analogous expression for the hexagonal case (see Cazzani and Rovati,

2003) for the presence of the material parameter b3, i.e.:
1

E

� �
tetra

¼ 1

E

� �
hexa


 b3n
2
1n

2
2: ð18Þ
Note that the material parameter a2, although given by the difference of two strictly positive material
parameters, is not sign-restricted. Anyway, these bounds for a2 are easily found:

s33 < a2 < s11; ð19Þ

where the lower and upper bounds are approached in the limit as s11 and s33 go to zero, respectively.

It must be observed that also the parameters b2 and b3 are not sign-restricted. In particular, no bounds
can be assigned to b2: indeed, by its definition (16), it depends on the compliance s13 which, in turn, is
loosely restricted by s33 and s12 (which are independent of each other) through inequality (12).

Concerning the parameter b3, the bounds (10)1, (10)4 and (11) imply that

s66 < b3 < 4s11: ð20Þ

In this case, the lower bound is attained for any s11 when s12 ! +s11; the upper bound is reached when,
simultaneously, s12 ! 
s11 and s66 ! 0.

For the elastic symmetry under consideration, the Lagrangian function (5) can be written in the form:
L ¼ s11 
 a2n43 
 b3n
2
1n

2
2 
 b2ðn21n23 þ n22n

2
3Þ þ kðn21 þ n22 þ n23 
 1Þ ð21Þ
and the corresponding explicit stationarity conditions (7) read
ð
b3n
2
2 
 b2n

2
3 þ kÞn1 ¼ 0;

ð
b3n
2
1 
 b2n

2
3 þ kÞn2 ¼ 0;

ð
2a2n23 
 b2ðn21 þ n22Þ þ kÞn3 ¼ 0;

n21 þ n22 þ n23 ¼ 1:

8>><
>>: ð22Þ



5062 A. Cazzani, M. Rovati / International Journal of Solids and Structures 42 (2005) 5057–5096
It is now possible to carry out some assumptions on the solutions: these allow to distinguish three different
cases. Case I occurs when the unit vector n has only one non-vanishing Cartesian component; Case II, when
n shows two components different from zero and Case III when n has all (i.e. three) non-vanishing compo-
nents. These three cases will be studied in detail in the following subsections.

2.1. Case I: n has only one non-vanishing component

First, if n has only one non-vanishing component, i.e., if n = ±e1, or n = ±e2, or n = ±e3, (e1, e2, e3 being
the unit vectors in the positive direction of the Cartesian reference axes) the following solutions are respec-
tively obtained:
ð1Þ

n21 ¼ 1;

n22 ¼ n23 ¼ 0;

k ¼ 0;
1
E ¼ s11;

8>>><
>>>:

ð2Þ

n22 ¼ 1;

n21 ¼ n23 ¼ 0;

k ¼ 0;
1
E ¼ s11;

8>>><
>>>:

ð3Þ

n23 ¼ 1;

n21 ¼ n22 ¼ 0;

k ¼ 2a2;
1
E ¼ s11 
 a2 ¼ s33:

8>>><
>>>:

ð23Þ
In these solutions the admissibility conditions 0 6 n21 6 1 (i = 1, 2, 3) are automatically satisfied, and the
positivity condition for Young�s modulus is a priori guaranteed in cases (1) and (2), whereas case (3) re-
quires that a2 < s11.

2.2. Case II: n has two non-vanishing components

The other cases to be considered are those when the unit vector n shows at the same time two non-van-
ishing components, i.e., if n = n2e2 + n3e3, or n = n1e1 + n3e3, or n = n1e1 + n2e2. In the first case
(n = n2e2 + n3e3), the following solution is obtained:
ð4Þ

n21 ¼ 0;

n22 ¼ 1
 n23 ¼ 1
 b2

2ðb2 
 a2Þ
¼ 1

2

 a2

2ðb2 
 a2Þ
;

n23 ¼
b2

2ðb2 
 a2Þ
¼ 1

2
þ a2

2ðb2 
 a2Þ
;

k ¼ b2n
2
3 ¼

b2
2

2ðb2 
 a2Þ
;

1
E ¼ s11 
 ða2n23 þ b2n

2
2Þn23 ¼ s11 


b2
2

4ðb2 
 a2Þ
:

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð24Þ
This result is the same as in the transversely isotropic case (see Cazzani and Rovati, 2003), because the solu-
tion does not depend on the material parameter b3 which makes the difference between the hexagonal and
the tetragonal cases. In other words, on the coordinate plane PI the behavior of Young�s modulus is the
same for the transverse isotropy and the tetragonal class. By virtue of this, reference can be made to Caz-
zani and Rovati (2003): conditions ensuring that n2 and n3 be positive, and, moreover, that a positive value
of 1/E is attained at the stationary point are given in Table 1, where the new parameter bH

2 is defined as
bH

2 :¼ 2s11 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
 a2

s11

r� �
¼ 2s11 1þ

ffiffiffiffiffiffi
s33
s11

r� �
:

If the second possible form of the unit vector is considered (n = n1e1 + n3e3), the corresponding solution
reads



Table 1
Admissibility conditions for the solution of Case II-(4)

b2 � a2 a2 � 0 0 < n22; n
2
3 < 1 1

E > 0

b2 > a2 a2 > 0 b2 > 2a2 2a2 < b2 < bH

2

a2 6 0 b2 P 0 0 < b2 < bH

2

b2 < a2 a2 P 0 b2 < 0 –
a2 < 0 b2 < 2a2 –
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ð5Þ

n21 ¼ 1
 n23 ¼ 1
 b2

2ðb2 
 a2Þ
¼ 1

2

 a2

2ðb2 
 a2Þ
;

n22 ¼ 0;

n23 ¼
b2

2ðb2 
 a2Þ
¼ 1

2
þ a2

2ðb2 
 a2Þ
;

k ¼ b2n
2
3 ¼

b2
2

2ðb2 
 a2Þ
;

1
E ¼ s11 
 ða2n23 þ b2n

2
1Þn23 ¼ s11 


b2
2

4ðb2 
 a2Þ
:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð25Þ
This case reproduces the previous one with the exchange in roles between n1 and n2, exactly as it appears in
the transversely isotropic case. Note again that the behavior of 1/E on the plane PII is independent on the
parameter b3.

Finally, when n = n1e1 + n2e2, the solution is
ð6Þ

n21 ¼ 1
2
;

n22 ¼ 1
2
;

n23 ¼ 0;

k ¼ b3
2
;

1
E ¼ s11 
 b3

4
:

8>>>>>><
>>>>>>:

ð26Þ
In this case, the value of 1/E depends on the material parameter b3 and the stationary points belong to the
bisectors of the coordinate axes.

The positivity of n1 and n2 is automatically satisfied, whereas the positivity of 1/E needs, by virtue of
(17), that the following inequality holds:
s11 

b3

4
> 0 ) b3 < 4s11: ð27Þ
Now, by the definition of b3, (17), it follows:
s11 > 
s12 

s66
2
; ð28Þ
which is always fulfilled for any admissible value of the elastic coefficient s66. Indeed, the upper bound given
by (20) guarantees that 1/E > 0; if, on the other hand, b3 is seen as an independent variable, (27)2 furnishes
an upper bound corresponding to (20).

It is useful to notice that the above-found stationary point is a maximum when
1

E
> s11 ) b3 < 0; that is; if 2ðs11 
 s12Þ < s66; ð29Þ
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whereas it is a minimum if
1

E
< s11 ) b3 > 0; that is; if 2ðs11 
 s12Þ > s66: ð30Þ
These two conditions allow to define two classes of behavior characterized by a shear stiffness respectively
lower, (29), or higher, (30), compared to that of an—at least transversely—isotropic material.

2.3. Case III: n has all non-vanishing components

The last case to be considered is that of n = n1e1 + n2e2 + n3e3:
ð7Þ

n21 ¼
b2 
 2a2

4ðb2 
 a2Þ 
 b3

;

n22 ¼
b2 
 2a2

4ðb2 
 a2Þ 
 b3

;

n23 ¼
2b2 
 b3

4ðb2 
 a2Þ 
 b3

;

k ¼ 2ðb2
2 
 a2b3Þ

4ðb2 
 a2Þ 
 b3

;

1
E ¼ s11 


b2
2 
 a2b3

4ðb2 
 a2Þ 
 b3

:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð31Þ
First, it must be noticed that this stationary point shows equal values of n21 and n22, so that it belongs to
one of the planes that bisect the coordinate axes x1 and x2, i.e. the planes PIV or PV. The value of 1/E is
different from those found in the previous three cases, because on one hand there is an explicit dependence
on b3—which does not appear in Cases II-(4) and II-(5)—and, on the other one, the material parameters a2
and b2 appear explicitly in the definition of 1/E, differently from Case II-(6).

In order for the solution to be acceptable, the admissibility conditions n21 ¼ n22 > 0 and n23 > 0 must be
fulfilled. These require that
0 <
b2 
 2a2

4ðb2 
 a2Þ 
 b3

;

0 <
2b2 
 b3

4ðb2 
 a2Þ 
 b3

:

8>><
>>: ð32Þ
Two cases must be considered.

1. If b2 > a2 + b3/4, (32) imply
b2 > 2a2

b2 >
b3
2

�
) b2 > max 2a2;

b3

2

� �
: ð33Þ
2. If b2 < a2 + b3/4, (32) imply
b2 < 2a2

b2 <
b3
2

�
) b2 < min 2a2;

b3

2

� �
: ð34Þ
Once ensured that 0 < n2i (for i = 1, 2, 3), it is easily verified that
n21 þ n22 þ n23 ¼
2ðb2 
 2a2Þ þ ð2b2 
 b3Þ

4ðb2 
 a2Þ 
 b3

¼ 1:
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It is now necessary to enforce the condition 1/E > 0; it implies
s11 

b2
2 
 a2b3

4ðb2 
 a2Þ 
 b3

> 0: ð35Þ
Again, two cases have to be considered, according to the sign of the denominator of (35):

1. If b2 > a2 + b3/4, it must result

b2
2 þ 4s11b2 þ ½a2b3 
 s11ð4a2 þ b3Þ� > 0;

b2 > a2 þ b3=4:

(
ð36Þ
The left hand of inequality (36)1 is a quadratic function of b2, and is therefore satisfied only within the range
defined by the roots (which must be real and distinct) of the associated quadratic algebraic equation:
b2
2 
 4s11b2 
 ½a2b3 
 s11ð4a2 þ b3Þ� ¼ 0: ð37Þ
The roots of (37) written in increasing order are
bI
2 :¼ 2s11 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4s11 
 b3Þðs11 
 a2Þ

p
; ð38Þ

bII
2 :¼ 2s11 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4s11 
 b3Þðs11 
 a2Þ

p
; ð39Þ
and turn out to be real and distinct if and only if the discriminant is positive, i.e.:
ð4s11 
 b3Þðs11 
 a2Þ > 0: ð40Þ

However the bounds (19), (20) cannot be violated, so that the only acceptable solution is
4s11 
 b3 > 0

s11 
 a2 > 0

(
)

b3 < 4s11

a2 < s11:

(
ð41Þ
The following result is therefore obtained:
b2 > a2 þ b3=4;

bI
2 < b2 < bII

2

(
ð42Þ
with b3 < 4s11, a2 < s11. It can be easily checked that the strongest inequality resulting from (42) is simply:
bI
2 < b2 < bII

2 :
2. If b2 < a2 + b3/4, it must result

b2
2 þ 4s11b2 þ ½a2b3 
 s11ð4a2 þ b3Þ� < 0;

b2 < a2 þ b3=4:

(
ð43Þ
The left hand of inequality (43) is now a quadratic function of b2, which can be satisfied only outside the
range of the roots (38), (39) of the associated quadratic algebraic equation (37), which must be again real
and distinct if bounds (19), (20) cannot be violated.As a consequence it must result
b2 < a2 þ b3=4;

b2 < bI
2 [ b2 > bII

2

(
ð44Þ
with b3 < 4s11, a2 < s11. It can be easily checked again that the strongest inequality resulting from (44) is
simply:



Table 2
Admissibility conditions for the solution of Case III-(7)

b2 � b3

4 þ a2 0 < n21; n
2
2; n

2
3 < 1 1

E > 0

b2 >
b3

4 þ a2 b2 > maxð2a2; b3

2 Þ maxð2a2; b3

2 Þ < b2 < bHH

2

b2 <
b3

4 þ a2 b2 < minð2a2; b3

2 Þ –
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b2 <
b3

4
þ a2;
since b3=4þ a2 < bI
2.

Finally, it is straightforward to verify that
min 2a2;
b3

2

� �
6 bI

2 6 max 2a2;
b3

2

� �
; ð45Þ
and recognize that the prescription resulting from the condition 1/E > 0 can be simply written, in Case 1
above, as
max 2a2;
b3

2

� �
< b2 < bII

2 : ð46Þ
An admissible solution for Case III, both in terms of n2i (i = 1, 2, 3), and of 1/E can be synthetically given in
Table 2, where the newly introduced parameter bHH

2 is defined as
bHH

2 :¼ 2s11 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4s11 
 b3Þðs11 
 a2Þ

p
:

3. Stationary values of Young�s modulus E: classification and examples

Stationary values of Young�s modulus reciprocal, 1/E, have been obtained in the previous Section for
tetragonal symmetry.

If symmetries of the tetragonal class are taken advantage of, it is possible to construct the whole surface
representing a spherical polar diagram of 1/E(n) (or of E(n)) by simply considering one-sixteenth of it, spe-
cifically the region of the octant bounded by coordinate planes PII, PIII and by the bisector plane PIV.

When all admissibility conditions are satisfied (both in terms of positive values of n2i (with i = 1, 2, 3) and
of 1/E) there are in such a region five different stationary points. For the reader�s convenience, such points
are denoted by their spherical coordinates, namely longitude / (measured on coordinate plane PIII starting
from plane PII); and latitude, # (measured starting from coordinate plane PIII). These stationary points are
as follows:

1. 1
E1
:¼ 1

E

��
ð0;0Þ ¼ s11.

It belongs to the coordinate axis x1 and lies on the intersection of planes PII and PIII. (On the whole
surface there are 4 points like this one.)

2. 1
E2
:¼ 1

E

��
ð�;p=2Þ ¼ s11 
 a2.

It belongs to the coordinate axis x3, and lies on the intersection of the coordinate plane PII and the bisec-
tor plane PIV. (There are, on the whole surface, 2 points like this.)
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3. 1
E3
:¼ 1

E

��
ðp=4;0Þ ¼ s11 
 b3

4
.

It belongs to the coordinate plane PIII, always corresponding to the intersection with the bisector plane
PIV. (There are 4 points like this on the whole surface.)

4. 1
E4
:¼ 1

E

��
ð0;#Þ ¼ s11 
 b22

4ðb2
a2Þ
.

It belongs to the coordinate plane PII. (There are 8 of these points on the whole surface.)

5. 1
E5
:¼ 1

E

��
ðp=4;#Þ ¼ s11 
 b22
a2b3

4ðb2
a2Þ
b3
.

It belongs to the bisector plane PIV. (There are 8 points like this on the whole surface.)

It should be noticed that the stationary points 1/E1, 1/E2 and 1/E3 are always present; the last two, namely
1/E4 and 1/E5, appear only if the conditions reported in Tables 1 and 2, respectively, are satisfied.

In order to characterize the stationary points, it is necessary to understand that the name minimum or
maximum, refers always to a constrained minimum/maximum, i.e. an extremum point belonging to a partic-
ular axis or plane. Moreover, stationary points are relevant to the radial vector describing in spherical coor-
dinates the surface 1/E(n).

With reference to 1/E2 and 1/E3 it can be stated that:

• 1
E2

is a minimum value on both planes PII and PIV whenever a2 > 0;

• 1
E2

is a maximum value on both planes PII and PIV whenever a2 < 0;

• 1
E3

is a minimum value on the plane PIII whenever b3 > 0;

• 1
E3

is a maximum value on the plane PIII whenever b3 < 0.

Moreover, on the bisector plane PIV it results
1

E3

>
1

E2

when a2 >
b3

4
;

1

E3

<
1

E2

when a2 <
b3

4
:

It suffices then to investigate:

1. what is the role of the stationary point 1/E4 (which appears only when conditions listed in Table 1 are
fulfilled) on the coordinate plane PII with reference to stationary points 1/E1 and 1/E2;

2. what is the role of the stationary point 1/E5 (which appears only when conditions listed in Table 2 are
fulfilled) on the bisector plane PIV with reference to stationary points 1/E3 and 1/E2.

After some lengthy checks, it follows that:

• 1
E4

is a minimum value on plane PII when both b2 > a2 and conditions listed in Table 1 are fulfilled;

• 1
E4

is a maximum value on plane PII when both b2 < a2 and conditions listed in Table 1 are fulfilled;

• 1
E5
is a minimum value on plane PIV when both b2 >

b3
4
þ a2 and conditions listed in Table 2 are fulfilled;

• 1
E5
is a maximum value on plane PIV when both b2 <

b3
4
þ a2 and conditions listed in Table 2 are fulfilled.

It is useful noting that on plane PII, whenever b2 = 0, the stationary value 1/E4 corresponds to # = 0, i.e. it
coincides with 1/E1; on the other hand, whenever b2 = 2a2, the stationary value 1/E4 corresponds to # =
p/2, coinciding with 1/E2. Similarly, on plane PIV, whenever b2 = b3/2, the stationary value 1/E5 corres-
ponds to # = 0, i.e. it coincides with 1/E3; whilst, whenever b2 = 2a2, the stationary value 1/E5 corresponds
to # = p/2, coinciding with 1/E2.



Table 3
Classification of stationary points of the surface 1/E(n) for tetragonal symmetry

Class a2 � 0 b3 � 0 b2 � a2 b2 � b3/4 + a2 1
E2

1
E3

1
E4

1
E5

Resulting order relationship for b2

I a2 > 0 b3 > 0 b2 > a2 b2 > b3/4 + a2 m m m m b2 > b3/4 + a2
II a2 > 0 b3 > 0 b2 < a2 b2 > b3/4 + a2 m m M m a2 + b3/4 < b2 < a2 �
III a2 > 0 b3 > 0 b2 > a2 b2 < b3/4 + a2 m m m M a2 < b2 < b3/4 + a2
IV a2 > 0 b3 > 0 b2 < a2 b2 < b3/4 + a2 m m M M b2 < a2
V a2 > 0 b3 < 0 b2 > a2 b2 > b3/4 + a2 m M m m b2 > a2
VI a2 > 0 b3 < 0 b2 < a2 b2 > b3/4 + a2 m M M m b3/4 + a2 < b2 < a2
VII a2 > 0 b3 < 0 b2 > a2 b2 < b3/4 + a2 m M m M a2 < b2 < b3/4 + a2 �
VIII a2 > 0 b3 < 0 b2 < a2 b2 < b3/4 + a2 m M M M b2 < b3/4 + a2
IX a2 < 0 b3 > 0 b2 > a2 b2 > b3/4 + a2 M m m m b2 > b3/4 + a2
X a2 < 0 b3 > 0 b2 < a2 b2 > b3/4 + a2 M m M m b3/4 + a2 < b2 < a2 �
XI a2 < 0 b3 > 0 b2 > a2 b2 < b3/4 + a2 M m m M a2 < b2 < b3/4 + a2
XII a2 < 0 b3 > 0 b2 < a2 b2 < b3/4 + a2 M m M M b2 < b3/4 + a2
XIII a2 < 0 b3 < 0 b2 > a2 b2 > b3/4 + a2 M M m m b2 > a2
XIV a2 < 0 b3 < 0 b2 < a2 b2 > b3/4 + a2 M M M m b3/4 + a2 < b2 < a2
XV a2 < 0 b3 < 0 b2 > a2 b2 < b3/4 + a2 M M m M a2 < b2 < b3/4 + a2 �
XVI a2 < 0 b3 < 0 b2 < a2 b2 < b3/4 + a2 M M M M b2 < b3/4 + a2
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These results allow to identify the following distinct classes, defined by all possible combinations of order
relationships between the values a2 and 0; b3 and 0; b2 and a2; b2 and (b3/4 + a2), which, on their own, de-
fine the nature (i.e. minimum or maximum) of stationary points 1/E2, 1/E3, 1/E4 and 1/E5 respectively. It is
tacitly assumed that in order to ensure the existence of 1/E4 and 1/E5 the conditions listed in Tables 1 and 2
must be fulfilled.

If constrained minima are denoted by the symbol m, constrained maxima by the symbol M, and the nota-
tion � is adopted to outline an order relationship which cannot be satisfied, the 16 classes in Table 3 can be
defined.

It should be noticed that four classes, namely II, VII, X and XV, prescribe conflicting attributes to b2

and must therefore be removed; as a consequence only 12 admissible classes can exist when characterizing
the stationary points of 1/E for tetragonal symmetry.

If now attention is turned to the expression of Young�s modulus E (and not its reciprocal 1/E), the pre-
vious results can be directly applied, provided that the role of minima and maxima are exchanged, whereas
the reciprocal of the stationary values are considered.

As a matter of fact, if spherical coordinates are again used to describe the surface E(n), the five above
mentioned stationary points are as follows:

1. E1 :¼ Ejð0;0Þ ¼ ð 1
E1
Þ
1.

It belongs to the x1 axis, at the intersection of planes PII and PIII.

2. E2 :¼ Ejð�;p=2Þ ¼ ð 1
E2
Þ
1.

It belongs to the x3 axis, at the intersection of planes PII and PIV.

3. E3 :¼ Ejðp=4;0Þ ¼ ð 1
E3
Þ
1.

It is located on the plane PIII, always at the intersection with plane PIV.

4. E4 :¼ Ejð0;#Þ ¼ ð 1
E4
Þ
1.

It belongs to the plane PII, provided that conditions listed in Table 1 are fulfilled.

5. E5 :¼ Ejðp=4;#Þ ¼ ð 1
E5
Þ
1.

It belongs to the bisector plane PIV, provided that conditions listed in Table 2 are fulfilled.



Table 4
Classification of stationary points of the surface E(n) for tetragonal symmetry

Class a2 � 0 b3 � 0 b2 � a2 b2 � b3/4 + a2 E2 E3 E4 E5 Reference figures

1a a2 > 0 b3 > 0 b2 > a2 b2 > b3/4 + a2 M M M M 3, 4
1b a2 > 0 b3 > 0 b2 > a2 b2 < b3/4 + a2 M M M m 5, 6
1c a2 > 0 b3 > 0 b2 < a2 b2 < b3/4 + a2 M M m m 7, 8
1d a2 > 0 b3 < 0 b2 > a2 b2 > b3/4 + a2 M m M M 10, 11
1e a2 > 0 b3 < 0 b2 < a2 b2 > b3/4 + a2 M m m M 12, 13
1f a2 > 0 b3 < 0 b2 < a2 b2 < b3/4 + a2 M m m m 14, 15
2a a2 < 0 b3 > 0 b2 > a2 b2 > b3/4 + a2 m M M M 17, 18
2b a2 < 0 b3 > 0 b2 > a2 b2 < b3/4 + a2 m M M m 19, 20
2c a2 < 0 b3 > 0 b2 < a2 b2 < b3/4 + a2 m M m m 21, 22
2d a2 < 0 b3 < 0 b2 > a2 b2 > b3/4 + a2 m m M M 24, 25
2e a2 < 0 b3 < 0 b2 < a2 b2 > b3/4 + a2 m m m M 26, 27
2f a2 < 0 b3 < 0 b2 < a2 b2 < b3/4 + a2 m m m m 28, 29
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When the above-listed stationary values of Young�s modulus are expressed as functions of the elastic
coefficients s11, s12, s13, s33, s44, s66 the following results are obtained:
E1 ¼
1

s11
; ð47Þ

E2 ¼
1

s33
; ð48Þ

E3 ¼
4

2s11 þ 2s12 þ s66
; ð49Þ

E4 ¼
4ðs11 þ s33 
 2s13 
 s44Þ

4ðs11s33 
 s213 
 s13s44Þ 
 s244
; ð50Þ

E5 ¼
2s11 þ 4s33 þ 2s12 
 8s13 
 4s44 þ s66

2s11s33 
 4s213 þ 2s12s33 
 4s13s44 
 s244 þ s33s66
: ð51Þ
It is now possible, when conditions listed in Tables 1 and 2 are fulfilled, to identify the 12 distinct classes of
material behavior listed in Table 4. It should be emphasized that with the data available in the literature (Lan-
dolt and Börnstein, 1992) it has been possible to find for each class at least one material belonging to it.

For each of the 12 outlined classes some parametric plots of the surface E(n) have been produced in the
range of spherical coordinates 0 6 / 6 p/2[0 6 # 6 p/2 in order to show the evolution exhibited by the
surface as a function of changes of material parameters.

For ease of comparison purposes, these plots have been produced by using the dimensionless counter-
parts of material parameters a2, b2, b3, namely A 0, B 0 and C 0, defined as follows:
A0 :¼ s33
s11

; B0 :¼ 2s13 þ s44
2s11

; C0 :¼ 2s12 þ s66
2s11

: ð52Þ
It can be easily shown that the inverse relations of (52), by virtue of (15)–(17) are simply:
a2 ¼ s11ð1
 A0Þ; b2 ¼ 2s11ð1
 B0Þ; b3 ¼ 2s11ð1
 C0Þ: ð53Þ

Moreover, for each class a figure showing the whole surface generated by E(n) for some representing mate-
rials is given.
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3.1. Class 1a

It is defined by the following ranges of the material parameters:
Fig. 2.
values
a2 > 0; b3 > 0; b2 > a2 þ b3=4;
or, in dimensionless form,
A0 < 1; C0 < 1; B0 <
1þ C0 þ 2A0

4
:

As shown in Fig. 2, where extension of contiguous classes 1a, 1b and 1c as a function of material parameter
b2 are outlined, the existence of the stationary value E4 is restricted to the range:
maxða2 þ b3=4; 2a2Þ < b2 < bH

2 ;
whereas that of E5 is delimited by
maxðb3=2; 2a2Þ < b2 < bHH

2 :
Since within this class it happens that bHH

2 < bH

2 , then it follows that both stationary values E4 and E5

exist only if
maxðb3=2; 2a2Þ < b2 < bHH

2 :
Fig. 3 shows the evolution of the surface E(n) when the material parameters B 0 and C 0 do change.
Fig. 4 presents the whole surface generated by the directional dependence of Young�s modulus for some

representative materials, listed in the figure caption.
Extension of Classes 1a, 1b, 1c as a function of the material parameter b2 and corresponding ranges of existence of stationary
E4 and E5.
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Fig. 3. Class 1a: evolution of the surface E(n) as a function of changes of the dimensionless parameters B 0 and C 0 for a fixed value of
A 0.
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3.2. Class 1b

The material parameter ranges are, in this case,
a2 > 0; b3 > 0; a2 < b2 < a2 þ b3=4;
i.e. in dimensionless form:
A0 < 1; C0 < 1;
1þ C0 þ 2A0

4
< B0 <

1þ A0

2
:



Fig. 4. Tetragonal system: materials belonging to Class 1a, defined in Table 4, and ordered for increasing values of the dimensionless
material parameter C 0. (a) In–Tl (indium–thallium, atomic percentage Tl: 15%); (b) indium–cadmium alloy (atomic percentage Cd:
3.4%); (c) indium–lead (atomic percentage Pb: 5%); (d) HgIn2Te4 (mercury indium telluride, vacancy compound); (e) CoPt (cobalt
platinum); (f) stishovite; (g) b-CdP2 (cadmium phosphide, at 100 K); (h) MoSi2 (molybdenum disilicide); (i) TlSe (thallium selenide). In
the following table, elastic compliance coefficients s11, . . . , s13 (taken from Landolt and Börnstein, 1992) and material parameters a2,
b2, b3 are all expressed in TPa
1; Young�s moduli Emin, Emax are given in GPa.

Mat. A 0 B 0 C 0 a2 b2 b3 s11 s33 s44 s66 s12 s13 Emin Emax

(a) 0.96 
0.21 
0.33 10.0 645.0 707.0 266.00 256.00 133.00 93.00 
134.00 
123.00 .003760 .023314
(b) 0.97 
0.04 
0.25 4.0 364.0 436.3 175.00 171.00 147.00 89.30 
87.80 
80.50 .005714 .022356
(c) 0.49 0.08 
0.22 94.0 337.0 448.0 183.00 89.00 107.00 192.00 
137.00 
39.00 .005464 .021445
(d) 0.84 0.34 0.08 6.4 51.5 71.5 38.80 32.40 46.700 41.50 
17.70 
10.30 .025773 .053628
(e) 0.95 0.38 
0.13 0.3 7.0 9.9 5.70 5.39 8.00 6.42 
2.47 
1.82 .175439 .337211
(f) 0.52 0.51 0.16 1.4 2.9 5.0 2.96 1.53 3.96 3.31 
1.17 
0.47 .337838 .654331
(g) 0.84 0.58 0.35 2.9 14.8 22.9 17.70 14.80 32.60 24.80 
6.13 
6.00 .056497 .087661
(h) 0.79 0.81 0.77 0.6 1.0 1.2 2.611 2.051 4.897 5.165 
0.586 
0.33 .382995 .487567
(i) 0.79 0.43 1.00 8.5 47.0 0.1 41.20 32.70 78.80 64.10 9.10 
21.70 .024272 .037241
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As Fig. 2 shows, the stationary value E4 exists only within the range:
Fig. 5.
of A 0.
2a2 < b2 < a2 þ b3=4;
and occurs only if b3/2 > 2a2.
Existence of the stationary value E5 is delimited by
a2 < b2 < minðb3=2; 2a2Þ;
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Class 1b: evolution of the surface E(n) as a function of changes of the dimensionless parameters B 0 and C 0 for a fixed value



Fig. 6. Tetragonal system: materials belonging to Class 1b, defined in Table 4, and ordered for increasing values of the dimensionless
material parameter C 0. (a) TeO2 (tellurium dioxide, at 78 K); (b) TeO2 (tellurium dioxide, at 300 K); (c) Hg2Br2 (mercurous bromide);
(d) Hg2I2 (mercurous iodide); (e) MnF2 (manganese fluoride); (f) a-NiSO4 Æ6H2O (nickel sulfate hexahydrate); (g) Sn (Tin); (h) TiO2

(titanium dioxide, rutile); (i) WSi2 (tungsten disilicide). In the following table, elastic compliance coefficients s11, . . . , s13 (taken from
Landolt and Börnstein, 1992) and material parameters a2, b2, b3 are all expressed in TPa
1; Young�s moduli Emin, Emax are given
in GPa.

Mat. A 0 B 0 C 0 a2 b2 b3 s11 s33 s44 s66 s12 s13 Emin Emax

(a) 0.07 0.12 
0.89 130.7 245.5 528.3 140.00 9.30 36.90 13.70 
131.00 
1.20 .007143 .126183
(b) 0.09 0.14 
0.84 106.5 201.4 431.1 117.00 10.50 37.40 15.10 
106.10 
2.38 .008547 .108401
(c) 0.03 0.13 
0.80 437.8 790.4 1634.6 453.00 15.20 134.00 89.40 
409.00 
9.20 .002208 .065789
(d) 0.03 0.13 
0.80 525.4 938.6 1942.5 541.00 15.60 171.00 89.50 
475.00 
13.80 .001848 .064103
(e) 0.33 0.45 
0.45 18.5 30.4 79.8 27.60 9.09 32.00 14.20 
19.40 
3.60 .036232 .130719
(f) 0.53 0.65 
0.29 30.7 46.1 167.8 65.00 34.30 86.50 56.20 
47.00 
1.30 .015385 .043384
(g) 0.35 0.44 
0.27 27.6 47.8 107.5 42.40 14.80 45.60 42.10 
32.40 
4.30 .023585 .067568
(h) 0.38 0.47 
0.21 4.2 7.2 16.4 6.80 2.60 8.06 5.21 
4.01 
0.85 .147059 .384615
(i) 0.76 0.84 0.67 0.6 0.8 1.6 2.482 1.890 4.726 4.598 
0.632 
0.271 .402901 .529101
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and requires min(b3/2, 2a2) > a2. As a consequence, as clearly shown in Fig. 2, it is not possible for this class
to have co-existence of both stationary values E4 and E5.

Fig. 5 outlines the evolution of the surface E(n) when, for a fixed value of A 0, B 0 and C 0 are independently
allowed to change.

In Fig. 6 the whole surface of E(n) generated by some representative materials belonging to Class 1b is
reported.
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Fig. 7. Class 1c: evolution of the surface E(n) as a function of changes of the dimensionless parameters B 0 and C 0 for a fixed value
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3.3. Class 1c

It is delimited as follows:
Fig. 8.
materi
(comp
(taken
given

Mat.

(a)
(b)
(c)
(d)
a2 > 0; b3 > 0; b2 < a2;
or, by switching to dimensionless parameters,
A0 < 1; C0 < 1; B0 >
1þ A0

2
:

By direct inspection of Fig. 2, it results that the stationary value E4 is guaranteed to exist if
b2 < 0;
while E5 exists within the range:
b2 < minðb3=2; 2a2Þ:

Hence both stationary values exist if b2 < 0.
Tetragonal system: materials belonging to Class 1c, defined in Table 4, and ordered for increasing values of the dimensionless
al parameter C 0. (a) Ag2SO4 Æ4NH3 (silver sulfate, ammoniated); (b) indium–lead (atomic percentage Pb: 17%; (c) vesuvian
lex CaMgFeAl silicate); (d) CsNiF3 (cesium nickel fluoride). In the following table, elastic compliance coefficients s11, . . . , s13
from Landolt and Börnstein, 1992) and material parameters a2, b2, b3 are all expressed in TPa
1; Young�s moduli Emin, Emax are
in GPa.

A 0 B 0 C 0 a2 b2 b3 s11 s33 s44 s66 s12 s13 Emin Emax

0.72 1.12 0.50 13.0 
11.2 46.0 46.40 33.40 127.00 86.00 
19.60 
11.50 .020966 .029940
1.00 1.11 0.93 0.0 
11.0 7.0 49.00 49.00 153.00 123.00 
16.00 
22.00 .019324 .021164
0.90 0.99 0.97 0.8 0.2 0.5 7.55 6.80 17.90 18.50 
1.93 
1.49 .132450 .147059
0.38 3.60 0.99 18.1 
151.2 0.4 29.10 11.00 213.00 84.00 
13.10 
1.81 .015910 .090909
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Fig. 7 shows the evolution of the surface E(n) when B 0 and C 0 do vary independently of each other, while
A 0 is kept fixed.

The whole surface representing E(n) for four materials belonging to Class 1c is depicted in Fig. 8.

3.4. Class 1d

The material parameters ranges are, for this class, as shown in Table 4:
Fig. 9.
values
a2 > 0; b3 < 0; b2 > a2;
whereas the dimensionless counterparts of a2, b2, b3 provide:
A0 < 1; C0 > 1; B0 <
1þ A0

2
:

In Fig. 9, along with the extension of contiguous classes 1d, 1e and 1f as a function of the material
parameter b2, it is shown that the stationary value E4 exists when
2a2 < b2 < bH

2 ;
whereas the existence of E5 requires that
2a2 < b2 < bHH

2 :
For this given class, it is easy to realize that bH

2 < bHH

2 , so that stationary values E4 and E5 coexist if
2a2 < b2 < bH

2 :
The evolution of the surface representing E(n) is shown in Fig. 10 when A 0 is kept fixed, while B 0 and C 0 are
allowed to change.

The whole surface of E(n) for one representative material belonging to Class 1d is shown in
Fig. 11.
Extension of Classes 1d, 1e, 1f as a function of the material parameter b2 and corresponding ranges of existence of stationary
E4 and E5.
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3.5. Class 1e

This class is delimited as follows:
a2 > 0; b3 < 0; a2 þ b3=4 < b2 < a2;
or, by using dimensionless parameters,
A0 < 1; C0 > 1;
1þ A0

2
< B0 <

1þ C0 þ 2A0

4
:



Fig. 11. Tetragonal system: material belonging to Class 1d, defined in Table 4. (NH2)2CO (urea): A 0 = 0.67, B 0 = 0.32 and C 0 = 11.86
(dimensionless); a2 = 31.0, b2 = 130.0, b3 = 
2062.0 (expressed in TPa
1). Elastic compliance coefficients (taken from Landolt and
Börnstein, 1992 and expressed in TPa
1): s11 = 95.10, s33 = 64.00, s44 = 160.00, s66 = 2220.00, s12 = 16.00, s13 = 
50.00. Young�s
moduli (in GPa): Emin = .001638 and Emax = .019112.
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Fig. 9 ensures the existence of the stationary value E4 when
a2 þ b3=4 < b2 < 0;
but this happens only if a2 + b3/4 < 0.
The stationary value E5 does not occur in any case within this class; as a consequence that prevents coex-

istence of both E4 and E5.
The evolution of the surface E(n) when parameters B 0 and C 0 are allowed to change independently of

each other is shown in Fig. 12.
Fig. 13 provides the complete surface generated by the directional dependence of Young�s modulus for

four different materials belonging to this class.

3.6. Class 1f

It is delimited as follows:
a2 > 0; b3 < 0; b2 < a2 þ b3=4;
or, in dimensionless form,
A0 < 1; C0 > 1; B0 >
1þ C0 þ 2A0

4
:

By referring to Fig. 9, the stationary value E4 exists when
b2 < minð0; a2 þ b3=4Þ;
whereas the other one, E5, exists if
b2 < b3=2:
Coexistence of these stationary values occurs therefore in the range b2 < b3/2.
Fig. 14 shows how the surface representing E(n) changes when, for a fixed value of A 0, B 0 and C 0 do

change independently.
In Fig. 15, Young�s modulus generated surfaces for some materials belonging to the considered class are

shown.
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3.7. Class 2a

It is delimited as follows (see Table 4):
a2 < 0; b3 > 0; b2 > a2 þ b3=4;



Fig. 13. Tetragonal system: materials belonging to Class 1e, defined in Table 4, and ordered for increasing values of the dimensionless
material parameter C 0. (a) Zr2Ni (zirconium nickel); (b) ZrSiO4 (zircon); (c) LuPO4 (lutetium phosphate); (d) (NH2)2CO (urea). In the
following table, elastic compliance coefficients s11, . . . , s13 (taken from Landolt and Börnstein, 1992) and material parameters a2, b2, b3

are all expressed in TPa
1; Young�s moduli Emin, Emax are given in GPa.

Mat. A 0 B 0 C 0 a2 b2 b3 s11 s33 s44 s66 s12 s13 Emin Emax

(a) 0.50 0.82 1.67 10.8 7.9 
28.8 21.60 10.80 41.70 104.00 
16.00 
3.20 .034722 .092593
(b) 0.94 1.39 3.84 0.2 
2.1 
15.0 2.65 2.50 8.85 20.70 
0.18 
0.75 .156006 .400000
(c) 0.93 1.39 6.58 0.3 
2.7 
39.1 3.50 3.25 11.80 46.10 
0.02 
1.05 .075386 .307692
(d) 0.48 1.62 22.34 23.2 
56.0 
1916.6 44.90 21.70 160.00 2000.00 3.20 
7.10 .001908 .046083
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or, by switching to dimensionless form,
A0 > 1; C0 < 1; B0 <
1þ C0 þ 2A0

4
:

As shown in Fig. 16, where the extension of the three contiguous classes 2a, 2b and 2c are marked as a
function of the material parameter b2, existence of stationary value E4 is ensured within the range:
maxða2 þ b3=4; 0Þ < b2 < bH

2

and that of stationary value E5 within the range:
b3=2 < b2 < bHH

2 :
As it is easy to check, for the present class it results bHH

2 < bH

2 ; hence the simultaneous occurrence of E4

and E5 is guaranteed if
b3=2 < b2 < bHH

2 :
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The evolution of surface E(n) when parameters B 0 and C 0 are allowed to change independently, while A 0

is fixed, is depicted in Fig. 17.



Fig. 15. Tetragonal system: materials belonging to Class 1f, defined in Table 4, and ordered for increasing values of the dimensionless
material parameter C 0. (a) Sr0.45Ba0.55Nb2O6 (strontium barium niobate); (b) K2CuF4 (potassium copper fluoride); (c) scapolite
(complex aluminosilicate); (d) LiRb5(SO4)3 Æ112H2SO4 (lithium rubidium sulfate trihydrogen sulfate). In the following table, elastic
compliance coefficients s11, . . . , s13 (taken from Landolt and Börnstein, 1992) and material parameters a2, b2, b3 are all expressed in
TPa
1; Young�s moduli Emin, Emax are given in GPa.

Mat. A 0 B 0 C 0 a2 b2 b3 s11 s33 s44 s66 s12 s13 Emin Emax

(a) 0.98 1.34 1.13 0.1 
4.4 
1.7 6.44 6.34 19.23 19.23 
2.33 
0.97 .130893 .157729
(b) 0.92 1.42 1.32 1.4 
14.7 
11.4 17.60 16.20 62.50 45.40 0.60 
6.30 .045499 .061728
(c) 0.85 2.37 1.50 1.8 
33.7 
12.4 12.30 10.50 63.90 43.70 
3.37 
2.79 .047088 .095238
(d) 0.71 1.78 2.48 10.7 
58.0 
110.8 37.40 26.70 143.00 222.00 
18.20 
5.10 .015351 .037453
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Fig. 18 presents the whole surface generated by the directional dependence of Young�s modulus for 9
representative materials belonging to Class 2a.

3.8. Class 2b

In this case, the range of material parameters is as follows:
a2 < 0; b3 > 0; a2 < b2 < a2 þ b3=4;
or, by making use of the dimensionless counterparts,
A0 > 1; C0 < 1;
1þ C0 þ 2A0

4
< B0 <

1þ A0

2
:

By inspection of Fig. 16 it is easily seen that existence of stationary value E4 is ensured within the range:
0 < b2 < a2 þ b3=4;
which is admissible only if b3/2 > 0.



Fig. 16. Extension of Classes 2a, 2b, 2c as a function of the material parameter b2 and corresponding ranges of existence of stationary
values E4 and E5.
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For this class the other stationary value, E5, does not exist, nor it is possible to find a common range of
existence for both values.

Fig. 19 presents, as usual, some parametric plots of the surface E(n) to allow understanding the effects of
changes of parameters B 0 and C 0 (whereas A 0 is kept fixed), on its shape evolution. These shapes should be
compared with the whole surface produced by a material belonging to the present class, shown in Fig. 20.

3.9. Class 2c

These are the bounds delimiting this class:
a2 < 0; b3 > 0; b2 < a2;
and their dimensionless counterparts turn out to be
A0 > 1; C0 < 1; B0 >
1þ A0

2
:

Fig. 16 shows that the stationary values E4 and E5 simultaneously exist if
b2 < 2a2:
Parametric plots showing the evolution of surface E(n) when parameters B 0 and C 0 are allowed to change by
taking A 0 fixed are presented in Fig. 21.

Fig. 22 provides instead the complete surfaces produced by the directional dependence of Young�s mod-
ulus for some materials belonging to Class 2c.

3.10. Class 2d

The range of material parameters for the present class are
a2 < 0; b3 < 0; b2 > a2;
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or, alternatively,
A0 > 1; C0 > 1; B0 <
1þ A0

2
:

Fig. 23 outlines the extension of the contiguous classes 2d, 2e and 2f as a function of the material param-
eter b2; it provides moreover the range of existence of the stationary value E4, which turns out to be
0 < b2 < bH

2

and that of the stationary value E5, namely
maxða2; b3=2Þ < b2 < bHH

2 :
It is easy to check that in this case bH

2 < bHH

2 ; hence E4 and E5 coexist if
0 < b2 < bH

2 :



Fig. 18. Tetragonal system: materials belonging to Class 2a, defined in Table 4, and ordered for increasing values of the dimensionless
material parameter C 0. (a) In–Tl (indium–thallium, atomic percentage Tl: 10%); (b) In–Tl (indium–thallium, atomic percentage Tl:
11.5%); (c) In (indium); (d) CdGeAs2 (cadmium germanium arsenide); (e) BaTi2 (barium titanate); (f) AgGaS2 (silver gallium sulfide);
(g) BaLaGa3O7 (barium lanthanum gallate); (h) SrClF (strontium chloride fluoride); (i) BaClF (barium chloride fluoride). In the
following table, elastic compliance coefficients s11, . . . , s13 (taken from Landolt and Börnstein, 1992) and material parameters a2, b2, b3
are all expressed in TPa
1; Young�s moduli Emin, Emax are given in GPa.

Mat. A 0 B 0 C 0 a2 b2 b3 s11 s33 s44 s66 s12 s13 Emin Emax

(a) 1.07 
0.25 
0.22 
15.0 559.0 547.0 224.00 239.00 125.00 93.00 
96.00 
118.00 .004184 .024603
(b) 1.17 
0.17 
0.15 
32.0 441.0 431.0 188.00 220.00 147.00 95.00 
75.00 
106.00 .004545 .022005
(c) 1.32 
0.12 
0.03 
47.4 332.9 306.4 148.80 196.20 153.70 83.20 
46.00 
94.50 .005097 .021921
(d) 1.25 0.07 0.24 
5.3 40.2 32.8 21.60 26.90 23.80 24.50 
7.04 
10.40 .037175 .104104
(e) 1.95 0.49 0.26 
7.7 8.2 12.0 8.05 15.70 18.40 8.84 
2.35 
5.24 .063694 .201379
(f) 1.37 0.24 0.33 
9.7 39.9 35.3 26.20 35.90 41.50 32.50 
7.70 
14.50 .027855 .069737
(g) 1.61 0.77 0.59 
6.1 4.5 8.1 10.03 16.16 25.64 18.52 
3.30 
5.06 .061881 .125178
(h) 1.51 0.81 0.96 
6.4 4.7 1.0 12.50 18.90 32.70 26.40 
1.20 
6.20 .052910 .084434
(i) 2.02 0.55 0.97 
16.5 14.5 1.1 16.20 32.70 41.10 30.10 0.60 
11.60 .030581 .069727
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Fig. 19. Class 2b: evolution of the surface E(n) as a function of changes of the dimensionless parameters B 0 and C 0 for a fixed value
of A 0.

Fig. 20. Tetragonal system: material belonging to Class 2b, defined in Table 4. Pb0.37Ba0.63Nb2O6 (lead barium niobate): A 0 = 1.66,
B 0 = 1.28 and C 0 = 0.78 (dimensionless); a2 = 
3.8, b2 = 
3.2, b3 = 2.6 (expressed in TPa
1); Elastic compliance coefficients (taken
from Landolt and Börnstein, 1992 and expressed in TPa
1): s11 = 5.80, s33 = 9.60, s44 = 18.20, s66 = 12.40, s12 = 
1.70, s13 = 
1.70.
Young�s moduli (in GPa): Emin = .104167 and Emax = .194175.
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Fig. 21. Class 2c: evolution of the surface E(n) as a function of changes of the dimensionless parameters B0 and C 0 for a fixed value
of A 0.
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Fig. 24 shows parametric plots of the surface E(n), and is intended to provide some clues about the evo-
lution of the surface shape when, for a fixed value of A 0, the dimensionless parameters B 0 and C 0 are allowed
to change.

Some complete surfaces generated by Young�s modulus for several materials belonging to this class are
presented in Fig. 25.

3.11. Class 2e

The delimiting range for material parameters is
a2 < 0; b3 < 0; a2 þ b3=4 < b2 < a2;



Fig. 22. Tetragonal system: materials belonging to Class 2c, defined in Table 4, and ordered for increasing values of the dimensionless
material parameter C 0. (a) Pb0.346Ba0.590Na0.036Li0.028–Nb2O6 (lead barium niobate, Na, Li-doped); (b) Ba2Si2TiO8 (barium silicon
titanium oxide, fresnoite); (c) PdPb2 (palladium plumbide). In the following table, elastic compliance coefficients s11, . . . , s13 (taken
from Landolt and Börnstein, 1992) and material parameters a2, b2, b3 are all expressed in TPa
1; Young�s moduli Emin, Emax are given
in GPa.

Mat. A 0 B 0 C 0 a2 b2 b3 s11 s33 s44 s66 s12 s13 Emin Emax

(a) 1.57 1.34 0.51 
3.0 
3.5 5.0 5.10 8.10 13.40 8.80 
1.80 0.14 .123457 .259740
(b) 1.08 1.75 0.91 
5.4 
11.4 1.4 7.60 13.00 30.00 17.00 
1.60 
1.70 .076834 .137931
(c) 1.02 2.18 0.98 
0.0 
3.5 0.1 1.48 1.50 7.45 4.01 
0.56 
0.51 .425164 .684229

Fig. 23. Extension of Classes 2d, 2e, 2f as a function of the material parameter b2 and corresponding ranges of existence of stationary
values E4 and E5.
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Fig. 24. Class 2d: evolution of the surface E(n) as a function of changes of the dimensionless parameters B 0 and C 0 for a fixed value of
A 0.
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and for the dimensionless ones is instead:
A0 > 1; C0 > 1;
1þ A0

2
< B0 <

1þ C0 þ 2A0

4
:

By inspection of Fig. 23 it turns out that the stationary value E4 exists if
a2 þ b3=4 < b2 < 2a2;
but this requires a2 + b3/4 < 2a2.
The other stationary value, E5, exists instead within the range
maxð2a2; b3=2Þ < b2 < a2;
provided that b3/2 > a2.



Fig. 25. Tetragonal system: materials belonging to Class 2d, defined in Table 4, and ordered for increasing values of the dimensionless
material parameter C 0. (a) Tb2(Mo)4)3 (terbium molybdate, at 533 K); (b) Sr0.61Ba0.39Nb2O6 (strontium barium niobate); (c) FeGe2
(iron germanide); (d) Li2B4O7 (lithium tetraborate); (e) Ca2Sr(C2H5CO2)6 (calcium strontium propionate); (f) C(CH2)ONO2)4
(pentaerythritol tetranitrate); (g) TlSe (thallium selenide); (h) Zn[C(NH2)3]2(SO4)2 (Zinc guanidinium sulfate); (i) HgI2 (mercuric
iodide). In the following table, elastic compliance coefficients s11, . . . , s13 (taken from Landolt and Börnstein, 1992) and material
parameters a2, b2, b3 are all expressed in TPa
1; Young�s moduli Emin, Emax are given in GPa.

Mat. A 0 B 0 C 0 a2 b2 b3 s11 s33 s44 s66 s12 s13 Emin Emax

(a) 1.59 
0.10 1.05 
14.1 53.1 
2.6 24.10 32.80 37.80 34.80 8.00 
21.30 .026178 .073473
(b) 1.90 1.13 1.08 
4.8 
1.4 
0.8 5.32 10.10 15.50 14.40 
1.46 
1.73 .099010 .187970
(c) 11.30 1.41 1.23 
49.2 
3.9 
2.2 4.78 54.00 17.20 11.40 0.18 
1.86 .018519 .212984
(d) 2.70 0.38 1.34 
15.1 11.1 
6.1 8.90 24.00 17.50 21.50 1.20 
5.40 .041667 .129461
(e) 1.04 0.70 1.38 
5.0 84.0 
107.0 142.00 147.00 288.00 513.00 
61.00 
44.00 .005926 .008185
(f) 1.74 0.67 1.53 
59.0 53.0 
84.0 80.00 139.00 199.00 254.00 
5.00 
46.00 .007194 .013563
(g) 1.26 0.14 1.67 
6.9 45.4 
35.7 26.50 33.40 31.20 83.30 2.70 
11.80 .028229 .060069
(h) 1.60 0.22 2.14 
27.4 71.4 
104.1 45.56 72.92 81.17 182.82 6.21 
30.70 .013714 .030612
(i) 2.63 0.88 5.39 
67.0 10.0 
360.2 41.00 108.00 138.00 433.00 4.60 
33.00 .007631 .024585
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As a consequence, such ranges are separate, therefore no simultaneous occurrence of E4 and E5 can be
foreseen.

Fig. 26 shows the evolution of the surface E(n) when, for a fixed value of A 0, dimensionless parameters B 0

and C 0 are independently changed.
Fig. 27 shows instead the surface generated by the directional dependence of Young�s modulus for 4

materials belonging to Class 2e.

3.12. Class 2f

This last class is delimited as follows (see Table 4):
Fig. 26
of A 0.
a2 < 0; b3 < 0; b2 < a2 þ b3=4;
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Fig. 27. Tetragonal system: materials belonging to Class 2e, defined in Table 4, and ordered for increasing values of the dimensionless
material parameter C 0. (a) ND4D2PO4 (ammonium dihydrogen phosphate, deuterated); (b) RbD2AsO4 (rubidium dideuterium
arsenate); (c) RbH2PO4 (rubidium dihydrogen phosphate); (d) CsH2AsO4 (cesium dihydrogen arsenate). In the following table, elastic
compliance coefficients s11, . . . , s13 (taken from Landolt and Börnstein, 1992) and material parameters a2, b2, b3 are all expressed in
TPa
1; Young�s moduli Emin, Emax are given in GPa.

Mat. A 0 B 0 C 0 a2 b2 b3 s11 s33 s44 s66 s12 s13 Emin Emax

(a) 2.32 2.32 4.40 
25.0 
50.0 
129.0 19.00 44.00 110.00 163.00 2.00 
11.00 .019512 .052632
(b) 1.10 1.97 5.39 
2.4 
47.8 
216.8 24.70 27.10 106.00 246.00 10.10 
4.40 .012674 .040486
(c) 1.31 2.56 8.46 
5.2 
52.7 
252.0 16.90 22.10 94.30 281.00 2.40 
3.90 .012516 .059172
(d) 1.29 3.83 15.15 
5.7 
109.9 
548.8 19.40 25.10 150.00 588.00 
0.19 
0.64 .006385 .051546
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or, in dimensionless form,
A0 > 1; C0 > 1; B0 >
1þ C0 þ 2A0

4
:

Fig. 23 guarantees that the stationary value E4 exists within the range:
b2 < minð2a2; a2 þ b3=4Þ;

while stationary value E5 exists within the range:
b2 < minðb3=2; 2a2Þ:

Hence E4 and E5 simultaneously occur if b2 < min(b3/2, 2a2).

The evolution of surface E(n) is parametrically investigated in Fig. 28, when A 0 is kept fixed, while B 0 and
C 0 vary independently of each other.

Finally Fig. 29 presents the directional dependence of E(n) for six materials which are representative of
the class under investigation.
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Fig. 28. Class 2f: evolution of the surface E(n) as a function of changes of the dimensionless parameters B 0 and C 0 for a fixed value
of A 0.
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4. Closure

For materials with tetragonal elastic symmetry, the directions along which Young�s modulus attains sta-
tionary values have been analytically computed. The analytical solutions are expressed in terms of three
material parameters responsible of the discrepancy from isotropy. The directions corresponding to critical
values of the function E(n) and the associated expressions have been discussed in detail and, in particular,
12 classes of different mechanical behaviors have been outlined. These classes cover all the possible mechan-
ical responses in terms of Young�s modulus and each class is discussed in detail. It is also shown that all these
classes occur in real materials, and a wide selection of the corresponding surfaces, showing in spherical polar
diagrams the directional dependence of E(n), are provided as well. Future developments of the present work



Fig. 29. Tetragonal system: materials belonging to Class 2f, defined in Table 4, and ordered for increasing values of the dimensionless
material parameter C 0. (a) Al2Cu (aluminum copper); (b) Na2S Æ9H2O (sodium sulfide nonahydrate); (c) La1.86Sr0.14CuO4 (lanthanum
strontium copper oxide); (d) K2PtCl4 (potassium tetrachloroplatinate); (e) NH4H2AsO4 (ammonium dihydrogen arsenate);
(f) KH2AsO4 (potassium dihydrogen arsenate). In the following table, elastic compliance coefficients s11, . . . , s13 (taken from Landolt
and Börnstein, 1992) and material parameters a2, b2, b3 are all expressed in TPa
1; Young�s moduli Emin, Emax are given in GPa.

Mat. A 0 B 0 C 0 a2 b2 b3 s11 s33 s44 s66 s12 s13 Emin Emax

(a) 1.09 2.09 1.25 
0.6 
16.1 
3.70 7.38 8.01 35.70 22.40 
1.97 
2.40 .084708 .135501
(b) 1.14 1.20 1.32 
5.3 
14.8 
24.0 37.80 43.10 114.00 124.00 
12.20 
11.80 .022543 .026455
(c) 1.27 1.38 1.80 
1.2 
3.4 
7.2 4.50 5.70 14.80 17.20 
0.50 
1.20 .158103 .222222
(d) 1.48 1.64 2.52 
19.2 
51.6 
122.0 40.10 59.30 165.00 214.00 
5.90 
16.60 .014164 .024938
(e) 2.53 3.11 4.12 
30.2 
83.4 
123.6 19.80 50.00 149.00 161.00 1.10 
13.00 .017879 .050505
(f) 1.43 2.54 4.65 
7.1 
50.4 
119.8 16.40 23.50 93.00 151.00 0.80 
4.90 .021570 .060976
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will concern the application of the procedure here presented to weaker elastic symmetry classes, although an
increasing number of elastic constants would lead to much more involved computations.
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